Skip to main content
Log in

Catalyst-free synthesis and shape control of CdTe nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The procedure reported here allows for the size and shape control of CdTe nanowires by means of colloidal chemistry. Thus, ultrathin, straight, saw-tooth-like and one-sided branched nanowires with zinc blende structures could be synthesized. Their formation does not require any catalyst and is most likely due to the oriented attachment of nanoparticles formed in the beginning of the reaction. The use of oleylamine as a solvent turned out to be crucial in order to achieve CdTe nanowires. The reaction between oleic acid and oleylamine in the presence of CdO proved to be essential, not only to activate the Cd precursor but also to provide reaction conditions facilitating nanowire formation by oriented attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239.

    Article  CAS  Google Scholar 

  2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  CAS  Google Scholar 

  3. Tang, Z.; Kotov, N. A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 2005, 17, 951–962.

    Article  CAS  Google Scholar 

  4. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  CAS  Google Scholar 

  5. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Article  CAS  Google Scholar 

  6. Jayadevan, K. P.; Tseng, T. Y. One-dimensional semiconductor nanostructures as absorber layers in solar cells. J. Nanosci. Nanotechnol. 2005, 5, 1768–1784.

    Article  CAS  Google Scholar 

  7. Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 2001, 105, 2260–2263.

    Article  CAS  Google Scholar 

  8. Rogach, A. L. Nanocrystalline CdTe and CdTe(S) particles: Wet chemical preparation size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng. B 2000, 69, 435–440.

    Article  Google Scholar 

  9. Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.

    Article  CAS  Google Scholar 

  10. Yu, W. W.; Wang, Y. A.; Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

    Article  CAS  Google Scholar 

  11. Kolny-Olesiak, J.; Kloper, V.; Osovsky, R.; Sashchiuk, A.; Lifshitz, E Synthesis and characterization of brightly photoluminescent CdTe nanocrystals. Surf. Sci. 2007, 601, 2667–2670.

    Article  CAS  Google Scholar 

  12. Kloper, V.; Osovsky, R.; Kolny-Olesiak, J.; Sashchiuk, A.; Lifshitz, E. The growth of colloidal cadmium telluride nanocrystal quantum dots in the presence of Cd0 nanoparticles. J. Phys. Chem. C 2007, 111, 10336–10341.

    Article  CAS  Google Scholar 

  13. Shieh, F.; Saunders, A. E.; Korgel, B. A. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 2005, 109, 8538–8542.

    Article  CAS  Google Scholar 

  14. Li, J.; Hong, X.; Li, D.; Zhao, K.; Wang, L.; Wang, H.; Du, Z.; Li, J.; Bai, Y.; Li, T. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods. Chem. Comm. 2004, 15, 1740–1741.

    Article  Google Scholar 

  15. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  CAS  Google Scholar 

  16. Cho, J. W.; Kim, H. S.; Kim, Y. J.; Jang, S. Y.; Park, J.; Kim, J. G.; Kim, Y. J.; Cha, E. H. Phase-tuned tetrapod-shaped CdTe nanocrystals by ligand effect. Chem. Mater. 2008, 20, 5600–5609.

    Article  CAS  Google Scholar 

  17. Niu, H.; Gao, M. Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew. Chem. Int. Ed. 2006, 45, 6462–6466.

    Article  CAS  Google Scholar 

  18. Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  CAS  Google Scholar 

  19. Sun, J.; Wang, L. W.; Buhro, W. E. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots. J. Am. Chem. Soc. 2008, 130, 7997–8005.

    Article  CAS  Google Scholar 

  20. Kuno, M.; Ahmad, O.; Protasenko, V.; Bacinello, D.; Kosel, T. H. Solution-based straight and branched CdTe nanowires. Chem. Mater 2006, 18, 5722–5732.

    Article  CAS  Google Scholar 

  21. Wuister, S. F.; Swart, I.; van Driel, F.; Hickey, S. G.; de Mello Donegá, C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507.

    Article  CAS  Google Scholar 

  22. Kuno, M. An overview of solution-based semiconductor nanowires: Synthesis and optical studies. Phys. Chem. Chem. Phys. 2008, 10, 620–639.

    Article  CAS  Google Scholar 

  23. Lilly, G. D.; Lee, J.; Sun, K.; Tang, Z.; Kim, K. S.; Kotov, N. A. Media effect on CdTe nanowire growth: Mechanism of self-assembly, Ostwald ripening, and control of NW geometry. J. Phys. Chem. C 2008, 112, 370–377.

    Article  CAS  Google Scholar 

  24. Sinyagin, A. Y.; Belov, A.; Tang, Z.; Kotov, N. A. Monte carlo computer simulation of chain formation from nanoparticles. J. Phys. Chem. B 2006, 110, 7500–7507.

    Article  CAS  Google Scholar 

  25. Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

    Article  CAS  Google Scholar 

  26. Vossmeyer, T.; Reck, G.; Katsikas, L.; Haupt, E. T. K.; Schulz, B.; Weller, H. A ‘double-diamond superlattice’ built up of Cd17S4(SCH2CH2OH)26 clusters. Science 1995, 267, 1476–1479.

    Article  CAS  Google Scholar 

  27. Rockenberger, J.; Troger, L.; Rogach, A. L.; Tischer, M.; Grundmann, M.; Eychmuller, A.; Weller, H. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys. 1998, 108, 7807–7815.

    Article  CAS  Google Scholar 

  28. Zheng, N.; Bu, X.; Lu, H.; Chen, L.; Feng, P. One-dimensional assembly of chalcogenide nanoclusters with bifunctional covalent linkers. J. Am. Chem. Soc 2005, 127, 14990–14991.

    Article  CAS  Google Scholar 

  29. Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36·DMF4, a cluster with a 15 Angstrom CdS core. Science 1993, 259, 1426–1428.

    Article  CAS  Google Scholar 

  30. Behrens, S.; Bettenhausen, M.; Eichhofer, A.; Fenske, D. Synthesis and crystal structure of [Cd10Se4(SePh)12(PPh3)4] and [Cd16(SePh)32(PPh3)2]. Angew. Chem. Int. Ed. 1997, 36, 2797–2799.

    Article  CAS  Google Scholar 

  31. Wuister, S. F.; de Mello Donegá, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B. 2004, 108, 17393–17397.

    Article  CAS  Google Scholar 

  32. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    Article  CAS  Google Scholar 

  33. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

    Article  CAS  Google Scholar 

  34. Zhang, Q.; Liu, S. J.; Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mat. Chem. 2009, 19, 191–207.

    Article  CAS  Google Scholar 

  35. Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 2007, 7, 1670–1675.

    Article  CAS  Google Scholar 

  36. Pradhan, N.; Xu, H.; Peng, X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006, 6, 720–724.

    Article  CAS  Google Scholar 

  37. Barnard, A. S.; Xu, H.; Li, X.; Pradhan, N.; Peng, X. Modelling the formation of high aspect CdSe quantum wires: Axial-growth versus oriented-attachment mechanisms. Nanotechnology 2006, 17, 5707–5714.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kolny-Olesiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Kruszynska, M., Parisi, J. et al. Catalyst-free synthesis and shape control of CdTe nanowires. Nano Res. 4, 824–835 (2011). https://doi.org/10.1007/s12274-011-0139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0139-4

Keywords

Navigation