Skip to main content
Log in

Strategies for developing marker-free transgenic plants

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The development of marker-free transgenic plants has responded to public concerns over the safety of biotechnology crops. It seems that continued work in this area will soon remove the question of unwanted marker genes from the debate concerning the public acceptability of transgenic crop plants. Selectable marker genes are co-introduced with genes of interest to identify those cells that have integrated the DNA into their genome. Despite the large number of different selection systems, marker genes that confer resistance to the antibiotics, hygromycin (hpt) and kanamycin (nptII) or herbicide phosphinothricin (bar), have been used in most transgenic research and crop development techniques. The techniques that remove marker gene are under development and will eventually facilitate more precise and subtle engineering of the plant genome, with widespread applications in both fundamental research and biotechnology. In addition to allaying public concerns, the absence of resistance genes in transgenic plants could reduce the costs of developing biotechnology crops and lessen the need for time-consuming safety evaluations, thereby speeding up the commercial production of biotechnology crops. Many research results and various techniques have been developed to produce marker-free transgenic plants. This review describes the strategies for eliminating selectable marker genes to generate marker-free transgenic plants, focusing on the three significant marker-free technologies, co-transformation, site-specific recombinase-mediated excision, and non-selected transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flavell, R. B., E. Dart, R. L. Fuchs, and R. T. Fraley (1992) Selectable marker genes: Safe for plants?. Nat. Biotechnol. 10: 141–144.

    Article  CAS  Google Scholar 

  2. Dale, P. J., B. Clarke, and E. M. G. Fontes (2002) Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20: 567–574.

    Article  CAS  Google Scholar 

  3. FDA (1998) Guidance for industry: Use of antibiotic resistance marker genes in transgenic plants. U.S. Food and Drug Administration, USA.

    Google Scholar 

  4. Kuiper, H. A., G. A. Kleter, H. P. Noteborn, and E. J. Kok (2001) Assessment of the food safety issues related to genetically modified foods. Plant J. 27: 503–528.

    Article  CAS  Google Scholar 

  5. Daniell, H. (2002) Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20: 581–586.

    Article  CAS  Google Scholar 

  6. Smyth, S., G. G. Khachatourians, and P. W. Phillips (2002) Liabilities and economics of transgenic crops. Nat. Biotechnol. 20: 537–541.

    Article  CAS  Google Scholar 

  7. Wu, L., S. Nandi, L. Chen, R. L. Rodriguez, and N. Huang (2002) Expression and inheritance of nine transgenes in rice. Transgenic Res. 11: 533–541.

    Article  CAS  Google Scholar 

  8. Chen, L., P. Marmey, N. J. Taylor, J. P. Brizard, C. Espinoza, P. D’Cruz, H. Huet, S. Zhang, A. de Kochko, R. N. Beachy, and C. M. Fauquet (1998) Expression and inheritance of multiple transgenes in rice plants. Nat. Biotechnol. 16: 1060–1064.

    Article  CAS  Google Scholar 

  9. Miki, B. and S. McHugh (2004) Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. J. Biotechnol. 107: 193–232.

    Article  CAS  Google Scholar 

  10. An, G. (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol. 79: 568–570.

    Article  CAS  Google Scholar 

  11. De Frammond, A. J., E. W. Back, W. S. Chilton, L. Kayes, and M. D. Chilton (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol. Gen. Genet. 202: 125–131.

    Article  Google Scholar 

  12. Daley, M., V. C. Knauf, K. R. Summerfelt, and J. C. Turner (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17: 489–496.

    Article  CAS  Google Scholar 

  13. Depicker, A., L. Herman, A. Jacobs, J. Schell, and M. Van Montagu (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol. Gen. Genet. 201: 477–484.

    Article  CAS  Google Scholar 

  14. DeBlock, M. and D. Debrouwer (1991) Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263.

    Article  CAS  Google Scholar 

  15. Komari, T., Y. Hiei, Y. Saito, N. Murai, and T. Kumasiashiro (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174.

    Article  CAS  Google Scholar 

  16. McCormac, A. C., M. R. Fowler, D. F. Chen, and M. C. Elliot (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res. 10: 143–155.

    Article  CAS  Google Scholar 

  17. Miller, M., L. Tagliani, N. Wang, B. Berka, D. Bidney, and Z. Y. Zhao (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumifaciens 2 TDNA binary system. Transgenic Res. 11: 381–396.

    Article  CAS  Google Scholar 

  18. De Neve, M., S. De Buck, A. Jacobs, M. Van Montagu, and A. Depicker (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 11: 15–29.

    Article  Google Scholar 

  19. Jones, J. D. G., D. E. Gilbert, K. L. Grady, and R. A. Jorgensen (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207: 478–485.

    Article  CAS  Google Scholar 

  20. Jorgensen, R., C. Snyder, and J. D. G. Jones (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207: 471–477.

    Article  CAS  Google Scholar 

  21. McKnight, T. D., M. T. Lillis, and R. B. Simpson (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445.

    Article  CAS  Google Scholar 

  22. Ebinuma, H., K. Sugita, E. Matsunaga, S. Endo, K. Yamada, and A. Komamine (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep. 20: 383–392.

    Article  CAS  Google Scholar 

  23. Fedoroff, N. (1989) Maize transposable elements. pp. 375–411. In: D. E. Berg and M. M. Howe (eds.). Mobile DNA. American Society of Microbiology, Washington DC, USA.

    Google Scholar 

  24. Baker, B., J. Schell, H. Lorz, and N. Federoff (1986) Transposition of the maize controlling elements ‘Activator’ in tobacco. Proc. Natl. Acad. Sci. USA. 83: 4844–4848.

    Article  CAS  Google Scholar 

  25. Yoder, J. J., J. Palys, K. Alpert, and M. Lassner (1988) Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Article  CAS  Google Scholar 

  26. Goldsbrough, A. P., C. N. Lastrella, and J. I. Yoder (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnol. 11: 1286–1292.

    CAS  Google Scholar 

  27. Yoder, J. I. and A. P. Goldsbrough (1994) Transformation systems for generating marker-free transgenic plants. Bio/Technol. 12: 263–267.

    Article  CAS  Google Scholar 

  28. Ebinuma, H., K. Sugita, E. Matsunaga, and M. Yamakado (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA. 94: 2117–2121.

    Article  CAS  Google Scholar 

  29. Akiyoshi, D. E., H. Klee, R. M. Amasino, E. W. Nester, and M. P. Gordon (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA. 81: 5994–5998.

    Article  CAS  Google Scholar 

  30. Barry, G. F., S. J. Rogers, R. T. Fraley, and L. Brand (1984) Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA. 81: 4776–4780.

    Article  CAS  Google Scholar 

  31. Dale, E. and D. Ow (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA. 88: 10558–10562.

    Article  CAS  Google Scholar 

  32. Gleave, A. P., D. S. Mitra, S. R. Mudge, and B. A. M. Morris (1999) Selectable marker-free transgenic plants without sexual crossing: Transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40: 223–235.

    Article  CAS  Google Scholar 

  33. Zuo, J., Q. W. Niu, S. G. Moller, and N. H. Chua (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 19: 157–161.

    Article  CAS  Google Scholar 

  34. Sreekala, C., L. Wu, D. Gu Wang, and D. Tian (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated CRE/loxP system. Plant Cell Rep. 24: 86–94.

    Article  CAS  Google Scholar 

  35. Zhang, Y., H. Li, B. Ouyang, Y. Lu, and Z. Ye (2006) Chemicalinduced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol. Lett. 28: 1247–1253.

    Article  CAS  Google Scholar 

  36. Cuellar, W., A. Gaudin, D. Solorzano, A. Casas, L. Nopo, P. Chudalayandi, G. Medrano, J. Kreuze, and M. Ghislain (2006) Selfexcision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol. Biol. 62: 71–82.

    Article  CAS  Google Scholar 

  37. Wang, Y., B. Chen, Y. Hu, J. Li, and Z. Lin (2005) Inducible excision of selectable marker gene from transgenic plants by the Crelox site-specific recombination system. Transgenic Res. 14: 605–614.

    Article  CAS  Google Scholar 

  38. Bai, X., Q. Wang, and C. Chu (2008) Excision of a selective marker in transgenic rice using a novel Cre-lox system controlled by a floral specific promoter. Transgenic Res. 17: 1035–1043.

    Article  CAS  Google Scholar 

  39. Mlynarova, L., A. J. Conner, and J. P. Nap (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol. J. 4: 445–452.

    Article  CAS  Google Scholar 

  40. Moravćíková, J., E. Vaculková, M. Bauer, and J. Libantová (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor. Appl. Genet. 117: 1325–1334.

    Article  Google Scholar 

  41. Futcher, A. B. (1988) The 2-mm circle plasmid of Saccharomyces cerevisiae. Yeast 4: 27–40.

    Article  CAS  Google Scholar 

  42. Lyznik, L. A., J. C. Mitchell, L. Hiyarama, and T. K. Hodges (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res. 21: 969–975.

    Article  CAS  Google Scholar 

  43. Lloyd, A. M. and R. W. Davis (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet. 242: 653–657.

    Article  CAS  Google Scholar 

  44. Kilby, N. J., G. J. Davies, M. R. Snaith, and J. A. H. Murray (1995) FLP recombinase in transgenic plants: Constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J. 8: 637–652.

    Article  CAS  Google Scholar 

  45. Sonti, R. V., A. F. Tisser, D. Wong, J. F. Viret, and E. R. Signer (1995) Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol. Biol. 28: 1127–1132.

    Article  CAS  Google Scholar 

  46. Luo, K. M., H. Duan, D. G. Zhao, X. L. Zheng, W. Deng, Y. Q. Chen, C. N. Stewart, R. McAvoy, X. N. Jiang, Y. H. Wu, A. G. He, Y. Pei, and Y. Li (2007) ’GM-gene-deletor’: Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol. J. 5: 263–374.

    Article  CAS  Google Scholar 

  47. Woo, H. J., H. S. Cho, S. H. Lim, K. S. Shin, S. M. Lee, K. J. Lee, D. H. Kim, and Y. G. Cho (2009) Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res. 18: 455–465.

    Article  CAS  Google Scholar 

  48. Araki, H., A. Jearnpipatkul, H. Tatsumi, T. Sakurai, K. Ushino, T. Muta, and Y. Oshima (1987) Molecular and functional organization of yeast plasmid pSR1. J. Mol. Biol. 182: 191–203.

    Article  Google Scholar 

  49. Onouchi, H., K. Yokoi, C. Machida, H. Matsuzaki, Y. Oshima, K. Matsuoka, K. Nakamura, and Y. Machida (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res. 19: 6373–6378.

    Article  CAS  Google Scholar 

  50. Onouchi, H., R. Nishihama, M. Kudo, Y. Machida, and C. Machida (1995) Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol. Gen. Genet. 247: 653–660.

    Article  CAS  Google Scholar 

  51. Ebinuma, H. and A. Komamine (2001) MAT (multiauto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev. Biol.-Plant 37: 103–113.

    Article  CAS  Google Scholar 

  52. Lebel, E. G., J. Masson, A. Bogucki, and J. Paszkowski (1993) Stress-induced intrachromosomal recombination in plant somatic cells. Proc. Natl. Acad. Sci. USA. 90: 422–426.

    Article  CAS  Google Scholar 

  53. Puchta, H., P. Swoboda, and B. Hohn (1995) Induction of intrachromosomal homologous recombination in whole plants. Plant J. 7: 203–210.

    Article  CAS  Google Scholar 

  54. Zubko, E., C. Scutt, and P. Meyer (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol. 18: 442–445.

    Article  CAS  Google Scholar 

  55. Galliano, H., A. E. Muller, J. M. Lucht, and P. Meyer (1995) The transformation booster sequence is a retrotransposon derivative that binds to the nuclear scaffold. Mol. Gen. Genet. 247: 614–622.

    Article  CAS  Google Scholar 

  56. Hare, P. and N. H. Chua (2002) Excision of selectable marker genes from transgenic plants. Nat. Biotechnol. 20: 575–580.

    Article  CAS  Google Scholar 

  57. De Vetten, N., A. M. Wolters, K. Raemakers, I. Van Der Meer, R Ter Stege, E. Heeres, P. Heeres, and R. Visser (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotechnol. 21: 439–442.

    Article  Google Scholar 

  58. Jia, H. G., M. J. Liao, J. P. Verbelen, and K. Vissenberg (2007) Direct creation of marker-free tobacco plant from agroinfiltrated leaf discs. Plant Cell Rep. 26: 1961–1965.

    Article  CAS  Google Scholar 

  59. Li, B., C. Xie, and H. Qiu (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep. 28: 373–386.

    Article  CAS  Google Scholar 

  60. Doshi, K. M., E. Eudes, A. Laroche, and D. Gaudet (2007) Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cell Dev. Biol.-Plant 43: 429–435.

    Article  CAS  Google Scholar 

  61. Bhatnagar, M., K. Prasad, P. Pooja Bhatnagar-Mathur, M. L. Narasu, F. Waliyar, and K. K. Sharma (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep. 29: 495–502.

    Article  CAS  Google Scholar 

  62. Malnoy, M., E. E. Boresjza-Wysocka, J. L. Norelli, M. A. Flaishman, D. Gidoni, and H. S. Aldwinckle (2010) Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene. Tree Gen. Gen. 6: 423–433.

    Article  Google Scholar 

  63. Weeks, J. T., J. Ye, and C. M. Rommens (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res. 17: 587–597.

    Article  CAS  Google Scholar 

  64. Endo, S., K. Sugita, M. Sakai, H. Tanaka, and H. Ebinuma (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J. 30: 115–122.

    Article  CAS  Google Scholar 

  65. Ow, D. W. (2007) GM maize from site-specific recombination technology, what next? Curr. Opin. Biotechnol. 18: 115–120.

    Article  CAS  Google Scholar 

  66. Chen, S. B., L. Xiang, H. Y. Peng, W. K. Gong, W. Rui, W. Feng, and Z. Zhen (2004) Cre/lox-mediated marker gene excision in elite indica rice plants transformed with genes conferring resistance to Lepidopteran insects. Acta. Bot. Sin. 46: 1416–1423.

    CAS  Google Scholar 

  67. Sugita, K., T. Kasahara, E. Matsunaga, and H. Ebinuma (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 22: 461–469.

    Article  CAS  Google Scholar 

  68. Ballester, A., M. Cervera, and L. Peña (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep. 26: 39–45.

    Article  CAS  Google Scholar 

  69. Khan, R. S., D. P. Chin, I. Nakamura, and M. Mii (2006) Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Plant Cell Rep. 25: 914–919.

    Article  CAS  Google Scholar 

  70. Woo, H. J., J. K. Sung, J. B. Kim, N. Y. Kim, S. M. Lee, K. S. Shin, S. H. Lim, S. C. Suh, K. H. Kim, and Y. G. Cho (2008) Transgenic tobacco with Γ-TMT of perilla showed increased salt resistance and altered pigment synthesis. J. Plant Biotechnol. 35: 329–335.

    Article  Google Scholar 

  71. Monsanto Co (2003) Application for authorization of MON 89034 maize in the European Union, according to Regulation (EC) No 1829/2003 on genetically modified food and feed. Part II, Summary. pp. 1–27. http://www.gmo-compass.org/pdf/regulation/maize/MON89034_maize_application_food_feed.pdf.

  72. Health Canada (2006) http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/nf-an129decdoc-eng.php. Health Canada, PL2204A1, 251 Frederick Banting Driveway, Ottawa, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gu Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, HJ., Suh, SC. & Cho, YG. Strategies for developing marker-free transgenic plants. Biotechnol Bioproc E 16, 1053–1064 (2011). https://doi.org/10.1007/s12257-011-0519-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0519-3

Keywords

Navigation