Skip to main content
Log in

Tolerance of Saccharomyces cerevisiae K35 to lignocellulose-derived inhibitory compounds

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talebnia, F., C. Niklasson, and M. J. Taherzadeh (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol. Bioeng. 90: 345–353.

    Article  CAS  Google Scholar 

  2. Martín, C. and L. J. Jönsson (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocelluloses-derived fermentation. Enz. Microb. Tech. 32: 386–395.

    Article  Google Scholar 

  3. Palmqvist, E. and B. Hahn-Hägerdal (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresource Technol. 74: 25–33.

    Article  CAS  Google Scholar 

  4. Parajó, J. C., H. Domínguez, and J. M. Domínguez (1998) Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocelluloses hydrolysates. Bioresource Technol. 66: 25–40.

    Article  Google Scholar 

  5. Almeida, J. R., T. Modig, A. Petersson, B. Hähn-Hägerdal, G. Lidén, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biot. 82: 340–349.

    Article  CAS  Google Scholar 

  6. Sakai, S., Y. Tsuchida, S. Okino, O. Ichihashi, H. Kawaguchi, T. Watanabe, M. Inui, and H. Yukawa (2007) Effect of lignocellulose-derived Inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl. Environ. Microb. 73: 2349–2353.

    Article  CAS  Google Scholar 

  7. Dunlop, A. P. (1948) Furfural formation and behavior. J. Ind. Eng. Chem. 40: 204–209.

    Article  CAS  Google Scholar 

  8. Ulbricht, R. J., S. J. Northup, and J. A. Thomas (1984) A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fund. Appl. Toxicol. 4: 843–853.

    Article  CAS  Google Scholar 

  9. Popoff, T. and O. Theander (1976) Formation of aromatic compounds from carbohydrates. Acta Chem. Scand. 30: 397–402.

    Article  Google Scholar 

  10. Kötter, P. and M. Ciriacy (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biot. 38: 776–783.

    Article  Google Scholar 

  11. Hahn-Hägerdal, B., C. F. Wahlbom, M., Gárdonyi, W. H. van Zyl, R. R. Cordero Otero, and L. J. Jönsson (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biot. 73: 53–84.

    Google Scholar 

  12. Lee, M., D. H. Cho, Y. H. Kim, J. Lee, J. H. Lee, S. W. Kim, J. Cho, D. Lee, S. Kim, and C. Park (2009) Effect of biomassderived inhibitors on ethanol production. Kor. Soc. Biotechnol. Bioeng. J. 24: 439–445.

    Google Scholar 

  13. Kim, T. -G. and K. Kim (1996) The construction of a stable starch-fermenting yeast strain using genetic engineering and raremating. Appl. Biochem. Biotech. 59: 39–51.

    Article  CAS  Google Scholar 

  14. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol. 299: 152–178.

    Article  CAS  Google Scholar 

  15. Pampulha, M. E. and M. C. Loureiro-Dias (1989) Combined effect of acetic acid, pH, and ethanol on intracellular pH of fermenting yeast. Appl. Microbiol. Biot. 31: 547–550.

    Article  CAS  Google Scholar 

  16. Verduyn, C., E. Postma, W. A. Scheffers and J. P. Van Dijken (1992) Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.

    Article  CAS  Google Scholar 

  17. Russell, J. B. (1992) Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling. J. Appl. Bacteriol. 73: 363–370.

    Article  CAS  Google Scholar 

  18. Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Lidén (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J. Biosci. Bioeng. 90: 374–380.

    CAS  Google Scholar 

  19. Modig, T., G. Lidén, and M. J. Taherzadeh (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase, and pyruvate dehydrogenase. Biochem. J. 363: 769–776.

    Article  CAS  Google Scholar 

  20. Horváth, I. S., C. J. Franzén, M. J. Taherzadeh, C. Niklasson, and G. Lidén (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats: Metabolic modeling of furfural conversion. Appl. Environ. Microb. 69: 4076–4086.

    Article  Google Scholar 

  21. Gorsich, S. W., P. J. Slininger, and J. Mccaffery (2006) The fermentation inhibitor furfural causes cellular damage to Saccharomyces cerevisiae. Proceedings of 28 th Symposium on Biotechnology for Fuels and Chemicals. April 30–May 3. Nashville. USA.

  22. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409–415.

    Article  CAS  Google Scholar 

  23. Terada, H. (1990) Uncouplers of oxidative phosphorylation. Environ. Health Persp. 87: 213–218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Cho, D.H., Kim, Y.H. et al. Tolerance of Saccharomyces cerevisiae K35 to lignocellulose-derived inhibitory compounds. Biotechnol Bioproc E 16, 755–760 (2011). https://doi.org/10.1007/s12257-010-0474-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0474-4

Keywords

Navigation