Skip to main content
Log in

The influence of trace TiO2 on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The complex technology of molecular imprinting with a photocatalytic reaction introduces novel ways of treating industrial and living sewage. This paper deals with the effects of trace TiO2 on Ag+-imprinted or non-imprinted adsorbents. NanoTiO2 was added during the preparation of the adsorbents. The performance of these adsorbents was compared with other common adsorbents, such as activated carbon and chitosan. TiO2 loading improved the adsorption ability for Ag+ of adsorbents. Adsorption equilibrium could be rapidly achieved at an initial Ag+ concentration of 200 mg/L under different light conditions (UV, visible light, and dark). After TiO2 loading, the maximal adsorption capacity of Ag+-imprinted and non-imprinted adsorbents was 25.0% higher, at 155.0 and 134.3 mg/g, respectively, at the initial Ag+ concentration of 1,000 mg/L. In order to understand the binding state of Ag, Ti on the adsorbents surface, FTIR, XPS were measured. The FTIR analysis, before and after adding TiO2, indicated that TiO2 bound with adsorbents through hydrogen bonding. XPS analysis, before and after adsorption, indicated Ag+ was reduced to Ag0 on the adsorbent surface, leading to an increased adsorption of Ag+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serpone, N. and E. Pelizzetti (1989) Photocatalysis — Fundamentals and Applications. Wiley, New York, NY, USA.

    Google Scholar 

  2. Hoffmann, M. R., S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69–96.

    Article  CAS  Google Scholar 

  3. Su, H. J., Q. Li, and T. W. Tan (2006) Double-functional characteristics of a surface molecular imprinted adsorbent with immobilization of nano-TiO2. J. Chem. Technol. Biotechnol. 81: 1797–1802.

    Article  CAS  Google Scholar 

  4. Fujishima, A., T. N. Rao, and D. A. Tryk (2000) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1: 1–21.

    Article  CAS  Google Scholar 

  5. Maurino, V., C. Minero, E. Pelizzetti, and M. Vincenti (1999) Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles. Colloids Surf. A 151: 29–338.

    Article  Google Scholar 

  6. Mills, A. and S. LeHunte (1997) An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108: 1–35.

    Article  CAS  Google Scholar 

  7. Kim, M. S., K. M. Hong, and J. G. Chung (2003) Removal of Cu(II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res. 37: 3524–3529.

    Article  CAS  Google Scholar 

  8. Fahmi, A. and C. Minot (1994) A theoretical investigation of water adsorption on titanium dioxide surfaces. Surf. Sci. 304: 343–359.

    Article  CAS  Google Scholar 

  9. Chenthamarakshan, C. R. and K. Rajeshwar (2000) Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: an interfacial induced adsorption-reduction pathway mediated by formate ions. Electrochem. Commun. 2: 527–530.

    Article  CAS  Google Scholar 

  10. Barakat, M. A. (2005) Adsorption behavior of copper and cyanide ions at TiO2-solution interface. J. Colloid Interface Sci. 291: 345–352.

    Article  CAS  Google Scholar 

  11. Malati, M. A., M. McEvoy, and C. R. Harvey (1982) The adsorption of cadmium(II) and silver(I) ions on SiO2 and on TiO2. Surf. Technol. 17: 165–174.

    Article  CAS  Google Scholar 

  12. Sökmen, M., D. W. Allen, F. Akkas, N. Kartal, and F. Acar (2001) Photo-degradation of some dyes using Ag-loaded titanium dioxide. Water Air Soil Pollut. 132: 153–163.

    Article  Google Scholar 

  13. Vamathevan, V., R. Amal, D. Beydoun, G. Low, and S. McEvoy (2004) Silver metallisation of titanium particles: effects on photoactivity for the oxidation of organics. Chem. Eng. J. 98: 127–139.

    Article  CAS  Google Scholar 

  14. Li, F. B. and Z. X. Li (2002) The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48: 1103–1111.

    Article  CAS  Google Scholar 

  15. Araña, J., C. Garrigai Cabo, J. M. Doña-Rodríguez, O. González-Díaz, J. A. Herrera-Melían, and J. Pérez-Peña (2004) FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes. Appl. Surf. Sci. 239: 60–71.

    Article  Google Scholar 

  16. Zhang, L. Z. And J. C. Yu (2005) A simple approach to reactivate silver-coated titanium dioxide photocatalyst. Catal. Commun. 6:684–687.

    Article  CAS  Google Scholar 

  17. Patakfalvi, R. and I. Dékány (2004) Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Appl. Clay Sci. 25: 149–159.

    Article  CAS  Google Scholar 

  18. Papp, S., R. Patakfalvi, and I. Dékány (2004) Synthesis and characterization of noble metal nanoparticles/kaolinite composites. Prog. Colloid Polym. Sci. 125: 88–95.

    CAS  Google Scholar 

  19. He, B. L., B. Dong, and H. L. Li (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9: 425–430.

    Article  CAS  Google Scholar 

  20. Li, Q., H. J. Su, J. Li, and T. W. Tan (2007) Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochem. 42: 379–383.

    Article  CAS  Google Scholar 

  21. Sung-Suh, H. M., J. R. Choi, H. J. Hah, S. M. Koo, and Y. C. Bae (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A 163: 37–44.

    Article  CAS  Google Scholar 

  22. Huang, H. Z., Q. Yuan, and X. R. Yang (2004) Preparation and characterization of metal-chitosan nanocomposites. Colloids Surf. B 39: 31–37.

    Article  CAS  Google Scholar 

  23. Subba Rao, K. V., B. Lavedrine, and P. Boule (2003) Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. J. Photochem. Photobiol. A 154: 189–193.

    Article  Google Scholar 

  24. Zhang, X. W., M. H. Zhou, and L. C. Lei (2005) Preparation of an Ag-TiO2 photocatalyst coated on activated carbon by MOCVD. Mater. Chem. Phys. 91: 73–79.

    Article  CAS  Google Scholar 

  25. Sano, T., N. Negishi, D. Mas, and K. Takeuchi (2000) Photocatalytic decomposition of N2O on highly dispersed Ag+ ions on TiO2 prepared by photodeposition. J. Catal. 194: 71–79.

    Article  CAS  Google Scholar 

  26. Yu, J. G., J. F. Xiong, B. Cheng, and S. W. Liu (2005) Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B 60: 211–221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijia Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, H., Su, H. & Tan, T. The influence of trace TiO2 on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium. Biotechnol Bioproc E 13, 77–83 (2008). https://doi.org/10.1007/s12257-007-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0174-x

Keywords

Navigation