Skip to main content

Advertisement

Log in

Development and Characterization of Starch/Gelatin Microneedle Arrays Loaded with Lecithin–Gelatin Nanoparticles of Losartan for Transdermal Delivery

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to develop and characterize biodegradable polymeric microneedle arrays loaded with (i) losartan potassium powder and (ii) nanoparticles loaded with losartan potassium dispersed in polymeric matrix (starch/gelatin) as innovative pharmaceutical forms intended to be used for blood pressure control.

Methods

The lecithin/gelatin nanoparticles were prepared by desolvation method. The independent variables were lecithin/gelatin amount and stirring speed while particle size, PDI (polydispersity index), and entrapment efficiency were the dependent variables studied. The optimized nanoparticle formulation was also characterized in terms of ζ potential and morphology. The mold of microneedle manufacture was created using a 3D printer by molding, and the microneedle arrays were prepared by micromolding method. The independent variables were starch/gelatin amount and drug form while fracture force, bioadhesion, and post-wetting bioadhesion were the dependent variables evaluated. The optimized microneedle array formulations were also characterized and evaluated in terms of morphology, release profiles, and in vitro losartan skin permeation studies.

Results

The optimized nanoparticle formulation was of 170.3 ± 3.1 nm of size, with 0.201 ± 0.013 of PDI, 40.45 ± 2.27% of entrapment efficiency, and − 32.9 ± 0.8 mV of ζ potential. The mold had an array of 25 microneedles with a height of 1.5 mm each. The optimized microneedle arrays were successful in terms of fracture force with a value of 408.3 ± 6.1 gf for MP and 320.2 ± 17.4 gf for MN. The results of in vitro skin permeation studies indicated that therapeutic losartan concentrations can be reached by using a microneedle array of 49 cm2 for MP and 13 cm2 for MN.

Conclusion

The optimal formulation of the microneedle array with nanoparticles constitutes the most suitable option for skin losartan delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are included in this manuscript.

Abbreviations

Lp:

losartan potassium

MP:

microneedle array with losartan potassium in powder

MN:

microneedle array with nanoparticles of lecithin/gelatin/losartan

PDI:

polydispersity index

SC:

stratum corneum

DMSO:

dimethyl sulfoxide

SEM:

scanning electron microscopy

ANOVA:

analysis of variance

References

  1. Escalona Rayo C, Serrano Castañeda P, López Cervantes M, Escobar Chávez JJ. Optimization of unidirectional Mucoadhesive Buccal patches based on chitosan and Pluronic® F-127 for Metoprolol controlled release: in vitro and ex vivo evaluations. J Pharm Innov. 2019. https://doi.org/10.1007/s12247-019-09401-8.

  2. Haldar RN. Global brief on hypertension: silent killer, global public health crisis. Indian J Phys Med Rehabil. 2013;24:2–2.

    Article  Google Scholar 

  3. Campos-Nonato I, Hernández-Barrera L, Pedroza-Tobías A, Medina C, Barquera S. Hipertensión arterial en adultos mexicanos: prevalencia, diagnóstico y tipo de tratamiento. Ensanut MC 2016. Salud Publica Mex. 2018;60:233–43.

    Article  Google Scholar 

  4. Kumar A, Aggarwal G, Singh K, Harikumar SL. Comparison of vegetable and volatile oils as skin permeation enhancers for transdermal delivery of losartan potassium. Der Pharm Lett. 2014;6:199–213.

    CAS  Google Scholar 

  5. Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44:797–814.

    Article  CAS  Google Scholar 

  6. Vashisth I, Ahad A, Aqil M, Agarwal SP. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: effectiveness and mechanism of action. Asian J Pharm Sci Elsevier Ltd. 2014;9:260–7.

    Article  Google Scholar 

  7. Saroha K, Yadav B, Sharma B. Transdermal patch: a discrete dosage form. Int J Curr Pharm Res. 2011;3:98–108.

    CAS  Google Scholar 

  8. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    Article  Google Scholar 

  9. Escobar Chávez JJ, Rodríguez Cruz IM, Domínguez Delgado CL. Chemical and physical enhancers for transdermal drug delivery. Pharmacology. 2012. https://doi.org/10.5772/3319.

  10. Castañeda PS, Domínguez Delgado CL, Rodríguez Cruz IM, Melgoza Contreras LM, Molina Trinidad EM, Escobar-Chavez JJ, et al. Development of poly (methyl vinyl ether-alt-maleic acid) microneedles for transdermal delivery of atorvastatin calcium. Curr Pharm Biotechnol. 2020;21(9):852–61.

  11. Tekko IA, Chen G, Domínguez-Robles J, Thakur RRS, Hamdan IMN, Vora L, et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 2020;586:119–58.

    Article  Google Scholar 

  12. Permana AD, Paredes AJ, Volpe-Zanutto F, Anjani QK, Utomo E, Donnelly RF. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm. 2020;154:50–61.

    Article  CAS  Google Scholar 

  13. Donnelly R, Douroumis D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv Transl Res. Elsevier B.V. 2015;5:311–2.

    Article  Google Scholar 

  14. Manikkath J, Sumathy T, Manikkath A, Mutalik S. Delving deeper into dermal and transdermal drug delivery: factors and mechanisms associated with Nanocarrier-mediated strategies. Curr Pharm Des. 2018;24:3210–22.

    Article  CAS  Google Scholar 

  15. Garcia P Desarrollo y Caracterización de un composito montmorillonita/micropartículas con acción combinada para reduccion de colesterol. Universidad Nacional Autónoma de México; 2018.

  16. Salinas R. Nanopartículas híbridas de gelatina-lecitina para el tratamiento de la hipercolesterolemía. Universidad Nacional Autónoma de México; 2019.

  17. García MA, Soberón E, Cortés M, Rodríguez R, Herrera JL, Alcantara A. Guía de validación de métodos analíticos (Colegío Nacional de Químicos Farmacéuticos Biólogos México, A.C.). 2002;132.

  18. Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, et al. Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharm Sci. 2006;9:124–32.

    CAS  PubMed  Google Scholar 

  19. Coester C, Langer K, Von Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation-a new preparation method, surface modifications and cell uptake. J Microencapsul. 2000;17:187–93.

    Article  CAS  Google Scholar 

  20. Xue J, Zhong Q. Blending lecithin and gelatin improves the formation of thymol nanodispersions. J Agric Food Chem. 2014;62:2956–62.

    Article  CAS  Google Scholar 

  21. Losartan - DrugBank. 2020. https://www.drugbank.ca/drugs/DB00678. .

  22. Pisipati A, Chavali Venkata Satya S. Formulation and characterization of anti hypertensive transdermal delivery system. J Pharm Res. 2013;6:551–4.

    CAS  Google Scholar 

  23. Martucci JF, Accareddu AEM, Ruseckaite RA. Preparation and characterization of plasticized gelatin films cross-linked with low concentrations of glutaraldehyde. J Mater Sci. 2012;47:3282–92.

    Article  CAS  Google Scholar 

  24. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:1–17.

    Article  Google Scholar 

  25. Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine. 2010;5:611–20.

    PubMed  PubMed Central  Google Scholar 

  26. Phone-Poulenc R Lecithin. ARMIN WENDEL 2014;1–19.

  27. Villarino NF, Landoni MF. Administración transdérmica de fármacos: una alternativa terapeútica. Analecta Vet. 2006;26:28–37.

    Google Scholar 

  28. Serrano Castañeda P, Escobar-Chávez JJ, Arroyo Vázquez J, Rodriguez-Cruz IM, Melgoza-Contreras LM. Pravastatin transdermal patch: effect of the formulation and length of microneedles on in- vitro percutaneous absorption studies. Iran J Pharm Res. 2020;19(2):127–33.

  29. Anguiano-Almazan E, Serrano-Castañeda P, Diaz-Torres R, Escobar-Chavez JJ. Design and evaluation of losartan transdermal patch by using solid microneedles as a physical permeation enhancer. Iran J Pharm Res. 2020;19(1):138–52.

  30. Laurent A, Mistretta F, Bottigioli D, Dahel K, Goujon C, Nicolas JF, et al. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine. 2007;25:6423–30.

    Article  Google Scholar 

  31. Arvanitoyannisa I, Nakayama A, Aiba S. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr Polym. 1998;36:105–19.

    Article  Google Scholar 

  32. Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37:1155–63.

    Article  Google Scholar 

  33. Marfil PHM, Anhê ACBM, Telis VRN. Texture and microstructure of gelatin/corn starch-based gummy confections. Food Biophys. 2012;7:236–43.

    Article  Google Scholar 

  34. Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28:41–57.

    Article  CAS  Google Scholar 

  35. Khanlari S, Dubé MA. Bioadhesives: a review. Macromol React Eng. 2013;7:573–87.

    Article  CAS  Google Scholar 

  36. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–71.

    Article  Google Scholar 

  37. Kalam M, Humayun M, Parvez N, Yadav S, Garg A, Amin S, et al. Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci. 2007;1:30–5.

    Google Scholar 

  38. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  Google Scholar 

  39. Sáez V, Hernáez E, Sanz AL. Mecanismos de liberación de fármaco desde materiales polímericos. Rev Iberoam Polímeros. 2004;5:55–70.

    Google Scholar 

  40. Franz TJ. Percutaneous absorption. On the relevance of in vitro data. J Invest Dermatol 1975. p. 190–5.

  41. Abdul RA, Al-Majed, Ebrahim A, Nasr YK, Hatem AA-A. Losartan: comprehensive profile 1st ed. Profiles Drug Subst Excipients Relat Methodol. Elsevier Inc. 2015;40:159–94. https://doi.org/10.1016/bs.podrm.2015.02.003.

    Article  CAS  Google Scholar 

  42. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58:641–9.

    Article  CAS  Google Scholar 

  43. Lo MW, Toh J, Emmert SE, Ritter MA, Furtek CI, Lu H, et al. Pharmacokinetics of intravenous and oral losartan in patients with heart failure. J Clin Pharmacol. 1998;38:525–32.

    Article  CAS  Google Scholar 

Download references

Funding

Authors want to acknowledge the support of PAPIIT CG (100220), Cátedra PIAPI (2015), and PAPIME (201420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Escobar-Chávez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Álvarez, R.A., Bernad-Bernad, M.J., Rodríguez-Cruz, I.M. et al. Development and Characterization of Starch/Gelatin Microneedle Arrays Loaded with Lecithin–Gelatin Nanoparticles of Losartan for Transdermal Delivery. J Pharm Innov 17, 71–84 (2022). https://doi.org/10.1007/s12247-020-09494-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09494-6

Keywords

Navigation