Skip to main content
Log in

Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this study is to examine the feasibility of using visible light to form gels from polysaccharide precursors. Hydrogel formation by visible light irradiation would be very beneficial because visible light is a benign light source and ready available when compared with other light sources such as UV. Dextran-methacylate was synthesized and photocrosslinked using (−)-riboflavin as a photoinitiator and L-arginine as a co-initiator under the visible light. The effect of various concentrations of (−)-riboflavin and L-arginine on the photo-crosslinking of dextran-methacrylate hydrogel was investigated. The fabricated hydrogel was characterized by FT-IR and SEM. The photoinitiator [(−)-riboflavin] and co-initiator (L-arginine) as well as dextran precursor are completely biocompatible. The optimum condition for the biocompatible dextran-based hydrogel formation under the harmless light source (visible light) was elucidated in this study. In general, the (−)-riboflavin, 0.01–0.5 %, and L-arginine, 5–20 % of the weight of dextran-methacrylate were the best condition in forming dextran-based hydrogels under the visible light. The three-dimensional hydrogel structure was verified by SEM morphology of swollen hydrogels. Photocrosslinking under the visible light source would enlarge the applications of this type of photocrosslinking in the biomedical area (e.g., eyes or other light-sensitive organs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Ng, S. Swami, and C. Gordon-Thomsom, Radiat. Phys. Chem., 75, 604 (2006).

    Article  CAS  Google Scholar 

  2. C. R. Taylor and A. J. Sober, Annu. Rev. Med., 47, 181 (1996).

    Article  CAS  Google Scholar 

  3. A. Baum and L. Cohen, Annu. Rev. Public. Health, 19, 319 (1998).

    Article  CAS  Google Scholar 

  4. F. M. Andreopoulos, C. R. Deible, M. T. Stauffer, S. G. Weber, W. A. Wagner, E. J. Beckman, and A. J. Russell, J. Am. Chem. Soc., 118, 6235 (1996).

    Article  CAS  Google Scholar 

  5. P. Petrov, E. Petrova, B. Tchorbanov, and C. B. Tsvetanove, Polymer, 48, 4943 (2007).

    Article  CAS  Google Scholar 

  6. J. Elisseeff, K. Anseth, R. Langer, and J. Hrkach, Macromolecules, 30, 2182 (1997).

    Article  CAS  Google Scholar 

  7. A. S. Sawhney, C. P. Pathak, and J. A. Hubbelll, Macromolecules, 26, 581 (1993).

    Article  CAS  Google Scholar 

  8. S.-H. Kim and C. C. Chu, J. Biomed. Mater. Res. (Submitted).

  9. K. Unna and J. G. Greslin, J. Pharmacol. Exp. Ther., 76(1), 75 (1942).

    CAS  Google Scholar 

  10. S. M. Geiger, “Eating Well”, p.48, EatingWell, Charlotte, Vermont, 2007.

    Google Scholar 

  11. G. Wollensak, E. Spoerl, and T. Seiler, Am. J. Ophthalmol., 135, 620 (2003).

    Article  CAS  Google Scholar 

  12. E. Sikorska, I. Khmelinskiii, A. Komasa, J. Koput, L. F. V. Ferreira, J. R. Herance, J. L. Bourdelande, S. L. Williams, D. R. Worrall, M. Insinska-rak, and M. Sikorski, Chem. Phys., 314, 239 (2005).

    Article  CAS  Google Scholar 

  13. S. K. Bajpai and S. Dubey, Polym. Int., 53, 2178 (2004).

    Article  CAS  Google Scholar 

  14. E. Frati, A. M. Khatib, P. Front, A. Panasyuk, and F. Aprile, Free Radical Bio. Med., 22, 1139 (1997).

    Article  CAS  Google Scholar 

  15. A. Ramu, M. M. Mehta, J. Liu, I. Huryan, and A. Aleksic, Cancer Chemoth. Pharm., 46, 449 (2000).

    Article  CAS  Google Scholar 

  16. M. Wasylewski, J. Protein Chem., 19, 523 (2000).

    Article  CAS  Google Scholar 

  17. A. Ramu, M. M. Mehta, T. Leaseburg, and A. Aleksic, Cancer Chemoth. Pharm., 47, 338 (2001).

    Article  CAS  Google Scholar 

  18. C. Sen-Varma, S. Ghosh, and B. B. Bhowmik, Chem. Phys. Lipids, 76, 49 (1995).

    Article  CAS  Google Scholar 

  19. S. G. Baldursdottir and A. L. Kyøniksen, Eur. J. Pharm. Biopharm., 59, 501 (2005).

    Article  CAS  Google Scholar 

  20. A. Ledwith in “Photochemistry and Polymeric Systems” (J. M. Kelly, C. B. Mcardle, and M. J. deF. Maunder Eds.), pp.1–46, Science Park, Cambridge: The Royal Society of Chemistry, 1993.

    Google Scholar 

  21. J. Hutchison in “Photochemistry in Organic Synthesis” (J. D. Coyle Eds.), pp.1–17, Burlington House, London: The Royal Society of Chemistry, 1986.

    Google Scholar 

  22. S. G. Bertolotti and C. M. Previtali, Macromolecules, 32, 2920 (1999).

    Article  CAS  Google Scholar 

  23. B. Orellana, A. M. Rufs, M. V. Encinas, C. M. Prevtali, and S. Bertolotti, Macromolecules, 32, 6570 (1999).

    Article  CAS  Google Scholar 

  24. M. V. Encinas, A. M. Rufs, S. Bertolotti, and C. M. Previtali, Macromolecules, 34, 2845 (2001).

    Article  CAS  Google Scholar 

  25. F. Trischitta, P. Pidala, and C. Faggio, Comp. Biochem. Phys. A, 148, 368 (2007).

    Article  Google Scholar 

  26. Y. Gao, Z. Xu, S. Chen, W. Gu, L. Chen, and Y. Li, Int. J. Pharm., 359, 241 (2008).

    Article  CAS  Google Scholar 

  27. D. Yamanouchi, J. Wu, A. N. Lazar, K. Craig Kent, C. C. Chu, and B. Liu, Biomaterials, 29, 3269 (2008).

    Article  CAS  Google Scholar 

  28. S.-H. Kim, C.-Y. Won, and C. C. Chu, Carbohyd. Polym., 40, 183 (1999).

    Article  CAS  Google Scholar 

  29. S.-H. Kim, C.-Y. Won, and C. C. Chu, J. Biomed. Mater. Res., 46, 160 (1999).

    Article  CAS  Google Scholar 

  30. S.-H. Kim and C. C. Chu, J. Biomed. Mater. Res., 49, 517 (2000).

    Article  CAS  Google Scholar 

  31. S.-H. Kim and C. C. Chu, J. Biomed. Mater. Res. B Appl. Biomater., 53, 258 (2000).

    Article  CAS  Google Scholar 

  32. S.-H. Kim and C. C. Chu, J. Biomater. Appl., 15, 23 (2000).

    Article  CAS  Google Scholar 

  33. R. L. Sidebotham, Ed., “Advances in Carbohydrate Chemistry and Biochemistry”, pp.371–383, New York, Academic Press Inc., 1974.

    Google Scholar 

  34. W. N. E. van Dijk-Wolthuis, O. Franssen, H. Talsma, M. J. van Steenbergen, J. J. K. van den Bosch, and W. E. Hennink, Macromolecules, 28, 6317 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin-hee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Sh., Chu, CC. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym 10, 14–20 (2009). https://doi.org/10.1007/s12221-009-0014-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-009-0014-z

Keywords

Navigation