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Invariant metrics for the quaternionic Hardy space

Nicola Arcozzf Giulia Sarfatti

Abstract

We find Riemannian metrics on the unit ball of the quaterniatgch are naturally associated
with reproducing kernel Hilbert spaces. We study the meitrising from the Hardy space in detail.
We show that, in contrast to the one-complex variable cas®i@mannian metric is invariant under
regular self-maps of the quaternionic ball.

KEY WORDS AND PHRASES Hardy space on the quaternionic ball; functions of a quaternionic variable; invariant
Riemannian metric.
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Notation. The symboH denotes the set of the quaternians= xzo + 19 + z2j + z3k = Re(q) + Im(q), with
Re(g) = zo andIm(q) = z17 + z2j + z3k; where thex;’s are real numbers and the imaginary unitg, k are
subject to the rulesj = k, jk = i, ki = j ands® = j2 = k> = —1. We identify the quaternionswhose
imaginary part vanishedm(q) = 0, with real numbersRe(q) € R; and, similarly, we lefl = Ri + Rj + Rk

be the set of the imaginary quaternions. The ndgin> 0 of g is |g| = \/>1_, 22 = (qq)/?, whereg =

xo — x11 — woj — x3k is the conjugate of. The open unit balB in H contains the quaterniong such that
lg| < 1. The boundary oB in H is denoted byB. By the symbdf we denote the unit sphere of the imaginary
quaternions:gq € I belongs taSif |¢| = 1. For I in S, the sliceL.; = L_; in H contains all quaternions having
the formg = x + yI, withx,y in R. If f is a real differentiable function on a domaih C H, we denote its real
differential at a pointw € € by the symbof, [w].

1 Introduction

Let H be the skew-field of the quaternions. The quaternionic Hapdycel%(B) consists of the formal
power series of the quaternionic variagle

fl@)=>_q"an,
n=0
such that the sequence of quaterni¢as} satisfies

. 1/2
11| 22wy == (Z \an!2> < 0. 1)
n=0
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It is easily verified that the series converges to a funcifionB = {¢ € H : |¢| < 1} — H. The
function f is slice regular[13] in the sense of Gentili and Struppa, who developed aaeiE complex
function theory which holds in the quaternionic settinge & monograph [12] for a detailed account
of the theory. The norm (1) can be polarized to obtain an ipneduct with values in the quaternions,

<Z q¢"an, Y q"bn>H2(B) = f: b

n=0

The space??(B) is a reproducing kernel Hilbert space, in the quaternioaitse: forw in B and f in
H?(B) we have

F(w) = (. k) oy - Wherek,, (q) = k(w,q) = Zq

There is a rich interplay between reproducing kernel Hillspaces and distance functions. See [3]
for an overview and several examples from one-variablerhotphic function space theory. In [9] the
connection between metric theory and operator theory iyze@ at a very deep level, and the case of
the Hardy space is a model example of that. The seminala@ifd¢lby Aronszajn is still an excellent
introduction to the theory of reproducing kernel Hilberasps.

In this article we are mainly interested in studying metdn® which are associated with the function
spaceH?(B). We also provide evidence that the metric properties of ffzes reflect the behavior of
functions inH?(B). The first metric we consider measures the distance betwegecpons of kernel
functions in the unit sphere of the Hilbert spadé(B):
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In the holomorphic case df%(A) one obtains this way the pseudo-hyperbolic meffie, w) = ‘ g

A calculation, see Proposition 4.2 below, gives a formailtyilar result in the quaternionic case:

6(z,w) = [(1 — qw) ™" x (¢ — w)]|,_.,

for z,w in B. Here, the producf(q) * g(¢) and the multiplicative invers¢(q)~* are not pointwise
product and pointwise inverse: they argoroduct and«-inverse, which are defined so that the usual
convolution rule for coefficients of power series’ produbtidds. See [12], and Section 2 where we
summarize some background material on slice regular fometi

The infinitesimal version of the pseudo-hyperbolic memithie complex disc, is the hyperbolic met-
ric in the Riemann-Beltrami-Poincaré disc mod&l? = % By infinitesimal version of a distance
dg, We mean the length metric associated wittfsee e.g. [15]). The infinitesimal metric associated with
0 is a Riemannian metrig onB. In Theorem 3.2 a formula is produced, which works for a wides< of
reproducing kernel quaternionic Hilbert spaces. Hereassthecial case of the quaternionic Hardy space.

Theorem 1.1. (I) The length metric associated with (2) is the Riemannianimetdefined below.



For anyw € B, let us identify the tangent spa@e,B with H. For any vectord € T,,B, where
w =z + yl, liesin Ly, , we decomposé = d; + ds with dy in Ly, andds in wa, the orthogonal
complement oL ;, with respect to the Euclidean metricHy The length ofl with respect tgy is:

1 1
2 _ 2
) = (1— ,w,2)2|d1| T 11— w22

|da?. Q)
(I The isometry group af is the one generated by the following classes of self-mapBs of
(a) regular Mébius transformations of the form

q— A
11—\’

g My(g)=(1—q\) " x(qg—A) =

with Ain (—1,1);
(b) isometries of the sphere of the imaginary units,
q=1z+yl — Ta(q) = = + yA(I),
whereA : S — Sis an isometry ofS;

(c) the reflection in the imaginary hyperplane,

q+— R(q) = —1.

In the metric (3), the first, “large” summand is the hyperbatietric on a slice, while the second
“small” summand is peculiarly quaternionic: it measureshriation of a quaternionic Hardy function
in the direction orthogonal to the slices. Its small sizeafl in quantitative, geometric terms the fact
that regular functions are affine in tBevariable, see [12].

The special réle of the real axis in the theory of slice regfuactions is here reflected in the fact
that all isometries of the metrig fix R N B. In particular, contrary to the case of the complex disc, the
action is not transitive. Other, more precise, propertiegh® metric will be stated and proved on route
to the proof of Theorem 1.1. We will study geodesics, geaddlgi complete submanifolds and other
geometric properties of the metric. For instance, we wiliverthat the radius of injectivity is infinite
at points of the real diameter @f, and finite elsewhere. The metric has neither positive, egative
sectional curvature.

The proof of Theorem 1.1 is split into two steps. In Theore&n8e will compute the Riemannian
metric associated with rather general reproducing kemmaegnionic Hilbert spaceX; that is the length
metric associated with the distance function

k k
dy(w,z) =41 — [({ ——, —=—
lw.2) \/ ‘<ukwuﬂ szua>ﬂ

We restrict most of our analysis to spaces of functions déforesymmetric slice domanis i, with

a slice preserving reproducing kernel. Examples are thelyHspace o and on the right half-space
H* = {¢q € H| Re(q) > 0} and the Bergman space &n The classification of the isometries is carried
out in Section 4.
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The Riemannian metrig has a rather small group of isometries, compared with the sfahings

in the unit disc of the complex plane, or even in the unit balseveral complex variables, with the
Bergman-Kobayashi metric. The latter metrics have a tiaasgroup of isometries and, more, the
space is isotropic; whereas all isometries of the formeehavix the real line. One might expect that
something better is possible. Unfortunately, there is reai@&innian metric ol which is invariant under
regular Mobius functions and which is “democratic” with respect e tsphere of imaginary units. If
a geometric invariant for slice regular functions on thetguaonic ball exists, it has to be other than a
Riemannian metric.

Theorem 1.2. There is no Riemannian metric onB having as isometries:
(i) regular Mobius transformationg — (1 — ga)~* % (¢ — a)u, witha in B and |u| = 1;
(i) maps of the formy = = + yI — = + yA(I), with A in O(3), the orthogonal group aR3.

The proof will be given in Subsection 4.3. We mention here Biai and Gentili proved in [5] that
the usual Poincaré metric dhis invariant under classical (non-regular) Mdbius maps.

A first relationship between the spaéf’(B) and the metrigy concerns the7? norm itself. Let
rS? be the sphere of radius < r < 1 in B, with respect to the usual Euclidean metric; containing
quaternionsy = re!!, with I in S andt in [0, 7]. The restriction ofy to S? induces a volume form
dVol,ss. Let f be in H?(B). Then,

1
2 1 R N 2 Vv
£ 12 ey l1—>1(1 " )Vol,»ga(rS?’) /rSB FFdVoliss,

a relation similar to the definition of the Hardy norm in thetufisc by means of the Poincaré metric.

In Section 5 we use the Caley map: ¢ — (1—q)~*(1+¢) to write down the metrig in coordinates
living in right half-spacell* := C'(B) = {¢q € H| Re(q) > 0}. This makes it easier to prove a bilateral
estimate for the distance function associated witiheorem 5.2. As an application, in Theorem 5.4
we further investigate the “rigidity” of the metrig, by showing that the only inner functions which are
Lipschitz continuous with respect iphave to be be slice preserving. In particular, they have tthix
real diameter oB. A function defined fronf2 C H to H is slice preserving if it map&; N €2 to L for
all 7inS.

We also consider in Subsection 5.1 four equivalent defimtiof the Hardy spac&/?(H*) on H™.
First, functionsf in H2(H*) might be characterized, pretty much as in the one-dimeakicomplex
case, as inverse Fourier transforms -in the quaterniomiseseof functiong : [0, 0c0) — H with finite

L2%-norm
Fll;2 = F .
17l /0 F(0)

Equivalently, 72(H) is the Hilbert space having reproducing kerhglq) = (¢ + w)~*. This second
viewpoint has the advantage of relatifif (H*) and H2(B). We show in fact in Proposition 5.1 that the
reproducing kernel fol 2 (H™) is arescalingof the reproducing kernel falf%(B):
_ _ 1 _
K2 (m) (C Yw),C7(2)) = 5(1 + 2)k g2 @y (w, 2)(1 + ).

Here we use the symbolg;: g and kg2 g+) for the reproducing kernels di and HT, respectively.
Hence, third, the functions i/ (H™) mlght be defined as the rescaled versions of functio$i(B).
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Fourth, the norm off in H2(H™) can be computed as the limit of the integralg 6f on “horocycles”
in H?(H™), when these are endowed with the natural volume form indbgettie metricg. The space
H?(H*) was defined in [2], using a fifth definition, which is shown teegiise to the same reproducing
kernel. Our contribution here is mainly relatidig? (H*) and the geometry dfl*.

2 Preliminaries

We recall the definition of slice regularity, together withnse basic results that hold for this class of
functions. We refer to the book [12] for all details and psadfetH denote the four-dimensional (non-
commutative) real algebra of quaternions andldenote the two-dimensional sphere of imaginary units
of H,S = {¢ € H|¢? = —1}. One can “slice” the spadé in copies of the complex plane that intersect
along the real axis,
H=|J®+RD), R =()(R+RI),

IeS IeS
wherelL; := R+ RI = C, forany! € S. Then, each elemegte H can be expressed as= = + yI,,
wherex, y are real (ifg € R, theny = 0) and, is an imaginary unit. Lef2 C H be a subset off.
For anyl € S, we will denote by2; the intersectiorf2 N L;. We can now recall the definition of slice
regular functions, in the sequel simply callegjular functions.

Definition 2.1. Let 2 be a domain (open connected subsetHinA functionf : Q@ — H is said to be
(slice) regularif for any I € S the restrictionf; of f to 2; has continuous partial derivatives and it is

such that L/ 5
Orfi(x +yl) = 5 (8_95 +I<‘?—y> fr(x +yl) =0
forall x + yI € Q.

A wide class of examples of regular functions is given by posegies with quaternionic coefficients of
the form)_>° , ¢™a, which converge in open balls centered at the origin.

Theorem 2.2. A function f is regular onB(0, R) = {q € H||q| < R} if and only if f has a power
series expansioffi(q) = > >, ¢"a, converging inB(0, R).

For regular functions, it is possible to define an appropnsition of derivative:

Definition 2.3. Let f be a regular function on a domail C H. Theslice (or Cullen) derivativef f is
the regular function defined as

1/0 0

. HN==-=——-IT— I).

0t ul) = (5~ I ) Fiat o)
We will consider domains in certain restricted classes.

Definition 2.4. LetQ) C H be a domain.

1. Qis called aslice domairif it intersects the real axis and if, for anye S, Q2 is a domain inL;.



2. Qs called asymmetric domairif for any pointx + yI € Q, withz,y € Rand I € S, the entire
two-spherer + yS is contained in).

The ballB and the right half-spacE™ = {¢ =z + Iy : I €S, z > 0, y € R} are symmetric slice
domains.
Slice regular functions defined on symmetric slice domaasta peculiar property.

Theorem 2.5(Representation Formulal.et f be a regular function on a symmetric slice domg&iand
letx + yS C Q. Then, for anyl, J € S,

Pl d) = g 1f(+yl) + S~y + T5li( —yl) — f(+ D),

In particular, there exisb, ¢ € H such thatf (z +yJ) = b+ JcforanyJ € S.

When restricted to a sphere of the foim- ¢S, a regular function is actually affine in the varialle
This nice geometric property leads to the following defomti

Definition 2.6. Let f be a regular function on a symmetric slice dom&inThespherical derivativef f
is defined as

Osf@)=(a—) " (flo) — f(@)-

A basic result that establishes a relation between reguietibns and holomorphic functions of one
complex variable is the following.

Lemma 2.7 (Splitting Lemma) Let f be a regular function on a slice domafa C H. Then for any
I € SandforanyJ € S, J L I there exist two holomorphic functios G : Q; — Lj such that

flx+yl)=F(x+yl)+Gx+yl)J
foranyz + yI € Q.

In general, the pointwise product of functions does notemes slice regularity. It is possible to
introduce a new multiplication operation, which, in the @pkcase of power series, can be defined as
follows.

Definition 2.8. Let f(q) = Y7, ¢"an, andg(q) = >~ ¢"by, be regular functions o3 (0, R). Their
regular producfor x-produc} is

n

Frg@) =) d" ) arbur,
0

n>0 k=
regular onB(0, R) as well.
Thex-product is related to the standard pointwise product bydhewing formula.

Proposition 2.9. Let f, g be regular functions on a symmetric slice dom&inThen

. [0 if f(g) =0
fxg(q) = { f@a(f(@)taf(q)) if f(q)#0



The reciprocalf —* of a regular functionf with respect to the-product can be defined.

Definition 2.10. Let f(q) = Y2, ¢"ax be aregular function oB(0, R), f # 0. Its regular reciprocal

IS
1

(@) = Wf (a),
where f¢(q) = >_,° , ¢"@y. The functionf~* is regular onB(0,R) \ {¢ € B(0,R) | f = f°(q) = 0}
and f = f—* = 1 there.

For example, in the case of theproducing kernefor the quaternionic Hardy spadé?(B), we have

Remark 2.11. Thereproducing kernefor H?(B) is
kw(q) = ¢"0" = (1 - qw)™*.
n=0

Then we have a natural definition @gular quotientf regular functions, which satisfy

Proposition 2.12. Let f and g be regular functions on a symmetric slice domé&inand denote by
Z={qeQ| fxfq) =0} If Ty :Q\ Z— Q\ is defined as

Tr(q) = (@) 'af(q),

then
7 g(q) = f(Tr(a)'g(Ty(q)) forevery qeQ\ Zp.

Important examples of regular quotients that will appeahasequel are thegular Mobius trans-
formations of the form

Ma(q) = (1 —qa)~" x (¢ — a),

wherea € B, which are regular self-maps of the quaternionic unit BallAfter multiplication on the
right by unit-norm quaternions, they are the only self-mafB which are regular, with regular inverse.
They were introduced by Stoppato in [18]. See also [12].

3 Metrics associated with quaternionic reproducing kerneHilbert spaces

Let 2 C H be a symmetric slice domain and &t be a reproducing kernel Hilbert space of regular
functions onQ). For the definition and all basic results concerning quatera Hilbert spaces see, e.g.,
[14] and references therein. For the properties we aredsited in, the same results hold in quaternion
valued Hilbert spaces and complex valued Hilbert spacasttaproofs are very similar. It is possible
to define a metridy;, on Q) in terms of the distance between projections of kernel fanstin the unit
sphere of the Hilbert spack. Namely, ifk(w, q) = k,(q) denotes the reproducing kernel &f then

oy : 2 x Q — RT can be defined as

k k
In(w,z) =4/1— <7w,—z>
wlw, 2) \/ ‘ Tealie Teal /

2

: (4)




Proposition 3.1. Let 2 be a symmetric slice domain and Htbe a reproducing kernel Hilbert space
of regular functions orf). Letw € QN Ly, and letd € H be such thatv + d € Q. Consider the
decompositionl = d; + da, whered; € L, andd; € L}w. Then

9 2
o e [200R,Tw) + @0 Cw) [, = | (s 00Re (] T o)), | +O(|dP)

15w 13,

63 (w, w+d) =

Proof. Recalling the definition (4) ofy, we get

kw13 KwallZ, = [(ws kusd) 3|
By, w + ) = el N 5)
s k|2, [ K all2,

We want to have a better description of the numerator of (S)ngJthe properties of the kernel functions
and the fact that regular functions are real analytic fumstiof4 real variables, we can write

kuw+a(q) = kuw(q) = kq(w + d) — kg(w) = (kq).[w](d) + O(|d|*)

where(k,).[w](d) denotes the real differential &f, at the pointw, applied to the vectod. We identify
here the tangent spadg, (2 with H. Thanks to the decomposition properties of the real difféaé of
regular functions in terms of slice and spherical deriegtj\'see Remark 8.15 in [12], we have

kuw+d(q) = ku(q) = di10cky(w) + d2dskq(w) + O(Id]*),

hence,

2
Fualll = W I, + || 100y () + dadkg ()|, +2Re (ks 100K, () + dodikg(w)) +O(1dl?)

and

2
[ kv a)gal” = |1y + (ks @10 (w) + d2Dkg(w)) | +O(1dP)

= kally + | (ko T0RT0) + 0o ) |

+ 2||kw||2, Re <kw, d1 0k (w) + dg@skq(w)>H +0(d]?).

Therefore

9 2
Il [100Fg ) + B0FaCw)|[, = | (R 18Fo ) + BDoFole ) | +0(ldP)

63 (w, w+d) = e
WIH

O

Proposition 3.1 reflects what happens in the complex cas€16¢ In fact the function®).k,(w)

andosk,(w) are regular with respect to the varialgleand they reproduce respectively the slice and the



spherical derivative of any regular functigh: 2 — H. In fact, for anyw € Qy,, if h € L;,, we can
write

Oef(w)= lim A (flw+h)— f(w)=Lm " ((f kwrn)y — (fr Kw)y)

h—0,he€Ly,, h—0,heLy,
_ 1 — _ B ok ) = f. ok (w)
= dim (PR R, = im0 (R (), = (.0 0),,

and
Osf(w) = (w =)' (f(w) — f(@)) = (w —W) " ({(f, kw)r — (. kw)n)
= (w =) (f oy — )y = (w — )" <f, (w— w)@skq(w)>H - <f, ask:q(w)>H

Proposition 3.1 allows us to define a Riemannian mejricon the symmetric slice domaf. For
each pointw € €, let us identify the tangent spadg,2 with H = L, + L}w. Then the length of a
tangent vectorl = d +dy € Ly, + L7 is

kol [0 T d2askq(w)H2 — (b @18 () - oy () \2

12 () = 2 #l (6
o (te) & 13,

Theorem 3.2. Let Q2 be a symmetric slice domain and (At be a reproducing kernel Hilbert space
of regular functions orf). Suppose thak is slice preserving: for anyw € Q the kernel functiork,,
preserves the slicé;, identified byw. Then the length of a tangent vectbe d; +ds € Ly, + L}w =
T.,$2 with respect to the Riemannian mettig associated with is given by
2
)
|da*.

(e o], - fomata ) ( 1,
Lkq(w)||  — |Ockw(w Wil —
415500 = kaHZé 4+ kaHzi

Proof. We begin by working out the numerator in equation (6). We have

|k Cw) + dok (w)Hi = (@00 (w) T D (0), 1 0cF g (w) + Dk (w))

:( q(w)H Idy |2 H |d2|2+2Re<d18k( )d283kq(w)>H
and )
(<kw,dlak( )+ 20y kg (w > ( —‘dlak w) + da0s kw(w)(
( ) ldaf? + ( lds|? + 2 Re (dlc‘)k (w )dg@skw(w)>.

Hence we are left to prove that both

Re <dlackq(w), dg@skq(w)>H = Re <d2 <ackq(w), Z?skq(w)>H d_l)

and
Re (i 0cku(w)dadkin(w) ) = Re (dad ki (w)0ck(w) i )

equal zero. Now notice that if,, maps(2;,, to Ly, , the same holds true for bothk,, anddk,,. The
fact thatd, € Ly, andd, € L}w leads us to conclude.
O



The hypothesis about kernel functions required in TheorghisJatisfied by the quaternionic analogues
of Hardy and Bergman spaces; see [1, 8].

4 Invariant metrics associated with the Hardy spaceff?(B)

In this section, we turn our attention to the special exanople Hardy spacéf?(B). We will study
the corresponding Riemannian metjic= g2 (). Recalling that for anyw the kernel functiork,, (¢) =
> o2, ¢"w™ preserves the slicB;, , we can directly apply Theorem 3.2 to find the expressiog, tfius
proving the first part of Theorem 1.1.

Proposition 4.1. For anyw € B, let us identify the tangent spa@g B with H. For any vectord € T,,B,
if w lies in Ly, and we decomposé= d; + d with d; in Ly, andds in L}w, then the length of with
respect tqy is given by
1

d = |d?

’ ’g(w (1_ ’wyg)g‘ 1‘ +
Proof. The following equalities can, by their nature, be reduceditaple calculations in the complex
plane:

1 2
m’dzf - (7)

1 2 |w|? 2 Jw|?
2 _ =
||k7w||H2(]B) 1 |w|2> w(w)‘ (1 — |w|2)4> 8Skw(w)‘ (1 — |w|2)2|1 — w2|27
|k, ‘ _HZ”M nl‘ I el
H2(B) m@) (1= |w[?)¥’
‘ﬁ‘ 2 B 1 2 _ 1 _ 1
SO ey T Tw—wE \1 - P 1—w? 1-w2)

A direct application of Theorem 3.2, then, yields that, witkpect to coordinatdg;, ds) € (wa,L}w),

1
o) = 7ozl

1 2
o0 = e M TR

11
O

The volume formiV ol, associated with the metricat any pointw = xg + x1i + x2j +x3k € B is then

dVolgyc(w)

W) = T Tupl - wi

wheredV ol gy.(w) = dxodzidxsdrs is the usual Euclidean volume element.

Proposition 4.2. Letd := dp2(p) be defined as i(4). For anyw, z € B, 4(z, w) coincides both with the
value atz of the regular Mobius transformatiof/,, associated witho and with the vaule atv of the
regular Mobius transformatiord/, associated with, namely

d(w,z) = [(1—q2) " *(q—2)| _, =[1—q0) " *(q—w)

.
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Proof. Letw, z be two points irB. By Proposition 2.12,
|k, kz) 2 ey | = [Rw(2)] = (1 = qo) ™|, = [1 - za| ™!

wherez = (1 — zw)~'z(1 — zw), which implies

2

< il ks > 1= s (1 wl?) (1 ).
| H2(B)

kol 2y " k=l 2 w)

Thus, sinceéz| = |z|, we get

2

P (w,z) =1— < ull ) i >
kwll 2@y 151l 2 (m) H2(B)

— |1 — 2w (y1 — ) - (1 - |wf?) (1 - W))
=|1—zw|* ((1 - @) (1 — wZ) — (

—wiw) (1 - 22)) = 1 - 2w % (¢ — w) (£ - )
=2 4 2 =1 (s 2 . 2
=1-zw| |z — w| :‘(1—210) (z—w)‘ :‘(1—qw) *(q—w)hqzz
where the last equality follows from Proposition 2.12. O

The previous relation between the me@i¢which is the finite version of the metrig) and regular
Mobius transformations, is not unexpected. In fact, asistudh [6], the real differential A,,), of
the regular Mobius map/,, associated with a poinb € B;, acts onL;, by right multiplication by
(1 — Jw|*)~" and onL7. by right multiplication by(1 — w?)~!. Looking at equation (7), we see that
the coefficients of the metrigat the pointw with respect to coordinated.;,,, L}w) coincide in modulus
with the components ofM,, ).. Moreover, the fact thag(w) measures vectors ih;, by multiplying
their Euclidean length bm means that the restriction gfto a sliceL; is the classical Poincaré
metric in the unit dis®;.

Using spherical coordinate® = {re!! | r € [0,1), t € [0,7], I € S}, if ¢ = re!! and we
decompose the lenght elemefagt= dq; + dg2 € Ly, + L}w, then, sincel/ is orthogonal tdl (because
I is unitary) we havéd, |> = dr? + r2dt? and|ds|? = r?sin® t|dI|? where|dI| denotes the usual two-
dimensional sphere round metric 8rez S?. Therefore we get the expression of the metric terds@r
associated witly in spherical coordinates:

2 dr? + r2dt? N r?sin? t|dI|?
S = .
9 (1—1r2)2 (1 —72)2 + 4r2sin?¢

(8)

That is, g is awarped producbf the hyperbolic metrigy,,,, on the complex unit disc with the standard
round metricgs on the two-dimensional sphere [17].

4.1 Isometries and geodesics @B, g)

From the expression (7) @f it is clear that three families of functions act isometitican (B, g):

11



(a) regular Mébius transformation of the form

qg—A

g My(q) = (1—q\) " *(g—A) = I ov

with Ain (—1,1);
(b) isometries of the sphere of imaginary units, which ingpaoordinates: > 0,¢t € [0,#],I € S

read as
g=rel = Ty(q) = retAl)
whereA : S — Sis an isometry of;

(c) the reflection in the imaginary hyperplane,

q+— R(q) = —7.

Our goal is to prove the following classification result,ghproving the second part of Theorem 1.1.
Theorem 4.3. The groupl” of isometries of B, g) is generated by maps of type), (b) and(c).

The proof requires a few steps. To begin with, we identifgéhclasses of totally geodesic submani-
folds of B, each one related to a class of isometries.
The first family is the one related to isometries of typg.

Lemma 4.4. For any/ € S, the two-dimensional submanifold Bf
By =BNL;={re! eB|rel0,1),tc[0,2n]}
is totally geodesic. In particular, for any € S, By is an hyperbolic disc.

Proof. Fix I € Sand Ietg,{yp be the restriction of the metrigto B, which is just the classical hyperbolic

metric in the unit disc. We will show that each geodesic(]Bf,g{Lyp) is still a geodesic ofB, g).
Pick two pointsw, z in B; and lety be the (hyperbolic) geodesic By joining w with z, anda(r) =
r(7) (cos(t(7)) + sin(t(7))I(7)) be a parametrized curve which joins= a(ry) with z = a(7y). If
71 () denotes the piecewise regular curve obtained by projectiogB;,

w1 (@) (1) = r(7) (cos(t(r)) + sin(t(7))I) ,
since|dI| is orthogonal td;, we conclude
length(c) > length(7; («)) > length(y).
U

The second family of totally geodesic submanifolds is eslato isometries of typéb). For any
I € S, we denote by (1) the great circle obtained intersectiigvith the pIaneL}.

12



Lemma 4.5. For any J € S, the three-dimensional submanifold®f
B(C(J)) = {re! e B|r €[0,1),t € [0,7],1 € C(J)}
is totally geodesic.

Proof. We will prove the statement by showing that the imaginarytauidentified by all points ly-
ing on a same geodesic always belong to the same great cirdle ®ore precisely, lety(r) =
r(7) (cos(t(7)) + sin(t())I(7)) be a parametrized geodesic(@, g) such that

{ Y(70) = 20 + yolo
v (10) = vo + woJo

We want to show that, for any, the imaginary unif (7) of v(7) belongs to the great circle Sfidentified
by I, and.Jy, namely that, for any, I(7) € C :=C (Iy x Jy) . Lety : S — S be the reflection of with
respect taC. Then the curvey(r) = r(7) (cos(t()) + sin(t(7))¥(I(7))) is a geodesic ofB, g) such
that
{ 7(10) = (7o)
¥ (70) = (70)

sincey fixes Iy and Jy. By the uniqueness of geodesics with assigned initial ¢mmdi, we get that
7(r) = ~(r) and hence that fixes I(7) for any 7. Therefore we conclude thd{(r) € C for any
Tel U

The third totally geodesic submanifold is the one relatetthéolast class of isometries, type).
Lemma 4.6. The three-dimensional submanifoldbf
B(r/2) = {re! € B|re[0,1),t =n/2,1 €S} ={rI|rec[0,1),I €S}
is totally geodesic.

Proof. The statement can be proven following the line of the prodferthma 4.5. The ingredients are
the fact that the ma@®® : B — B, ¢ — —g is an isometry which fixes (punctuallyy(x/2), and the
uniguness of geodesics with assigned initial conditions. O

Considering the intersection of totally geodesic subnudaisf of typeB(C'(J)) with B(x/2) allows
us to identify another family of totally geodesic submaluoof B.

Corollary 4.7. LetC(.J) be a great circle irS. Then the two-dimensional submanifdi(r/2,C(.J)) C
B(w/2), defined as

D (7/2,C(J)) = {ref e B|re[0,1),t =7/2,]1 €C(J)} ={rI €B|re[0,1),I €C(J)},

is totally geodesic.
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Remark 4.8. Notice that for the two-dimensional submanifditi(w/2,C(.J)) the following orthogonal-
ity relation holds:

D (n/2,C(J)) NB; = {0} andTyD (7/2,C(J)) = ToB7.

Moreover, applying Mdbius maps of the foridy to D (x/2,C(J)), we can extend the orthogonality
relation from the origin to all points i N R. In this way we obtain a family of totally geodesic
submanifolds

D (t,C(J)) = My (D (7/2,C(J)))

that, fort € [0, 7] andJ € S/{£1}, defines a foliation of the manifold.

In order to have some understanding of the (global) behadidhe metricg, let us investigate some
metric properties of the discs of the typ)b(g,C(J)). Since the imaginary units taken into account
belong toC(.J) = S', we can change coordinates, setting et? and|dI| = d#, so that the metrig, on
D (%,C(J)), reduces to

dr? r2d6?
22 T T1e

It is actually convenient to parametrize (Z,C(J)) C I = R? as a surface of revolution of the form
(®(p), ¥(p)cos B, ¥(p)sinh), wherep is the arc length of the generating curve. Setting

2 _
dSD—

1 1+7r

= :—1
p=p(r)=glogs—,

we get
dr? r? 1
m = dP2 and m = Z tanh2(2p)

and hence, in coordinatép, 6), we get that the metric is expressed as
1
ds?, = dp* + 1 tanh?(2p)d6* = dp* + U (p)do>. (9)

Remark 4.9. The Gaussian curvaturg of the two-dimensional submanifol®? (3,C(J)) is positive.
In fact, see e.g. [11], with respect to coordinates)) it can be computed as

_ =(p)
K=30)

which is a non-negative quantity sinde(p) = 1 tanh(2p) > 0 and¥”(p) < 0. This in particular
implies that the sectional curvature @, ¢) is positive on all section® (%,C(J)), while it is negative
on all slicesB;.

It is possible to study geodesicst(g, C(J)) by means of the Euler-Lagrange equations

Odr _ do
{ WL_E%@L

S —4dor

ap dt 9p
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associated with the Lagrangian

tanh?(2p) 92>

.4 1/,
L(paeapa 977-) - 5 <p2 + 4

namely

(10)

{ 04 (tanhi(2p) 9) |

tanh(2p) I_LWW = p.

The first equation in (10) yields

tanhj(Zp)é _ A,

for some constandl. If A = 0, we getd = 0 and hence the second equation in (10) implies that0.

If otherwise A # 0 we getd = ﬁ which implies|d| > 4|A|. Therefore all generating curves,
I

with @ = 0, are geodesics ab. Which is not surprising since they correspond to radii) = re?
for I € C(J). The other important fact that arises is that for any pgire D (Z,C(J)) \ {0} any
geodesic corresponding t # 0 intersects in finite time the “radial” geodesic throughThis leads to
the following result.

Lemma 4.10. LetJ € S. For anyq € D (g,C(J)) such thaty # 0, the injectivity radius ay is finite.
On the other hand, the injectivity radius @&= 0 is infinite.

This important metric property of the point= 0 is useful to classify the isometries @B, g). First of
all it tells us that isometries map the real diameteBab itself.

Lemma 4.11. LetT" be the group of isometries @B, g). Then, forany € T, (BN R) = BN R.

Proof. Consider firsiy = 0. Since the injectivity radius at = 0 is infinite, then, for any € T, the
injectivity radius atp(0) is infinite as well. By post-composing with a regular Mébius transformation
of type (a) M, we can map to D (3,C(J)) (for someJ € S) and hence Lemma 4.10 yields that
M, (¢(0)) = 0. SincelM, preserves the real diameterbf we get that(0) € R. To conclude, notice
that we can map each point Bfn R to 0 by means of a regular Mobius map of tyfg. O

We can finally prove the Classification Theorem for isometa&(B, g).

Proof of Theorem 4.3Let ® € T" be an isometry ofB, g). Up to composition with a regular Mobius
transformation of typéa) and with the mapR : ¢ — —¢, we can suppose thdt(0) = 0 and that, by
Lemma4.11p(BNRT) =BNR".

We now show thab fixesB(r/2). SetB(r/2) = ®(B(x/2)). Sinced is an isometry, Lemma
4.6 implies thatB(r/2) is a totally geodesic submanifold Bf Moreover, sinceb(0) = 0, since the
geodesics starting &t lie on slices, and since, by Lemma 4.4, the slices carry tlwalusyperbolic-
Poincaré metric: we have thdt maps radiiy; (r) = re2! to radii of the form® (v (r)) = re?(D¥()
with 0(I) € [0, x|, andy)(I) € S. Let us show thaf is actually constant of.

If d, denotes the distance function Bnassociated witly, recalling equation (8), on the one hand we
have

dy ((I)(’Yfl(r)% (I)(’YIQ (T))) = dg (’Yh (T)77[2 (T)) = dg (7”6%]1,7“6%]2)
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r r—1 1

< ——ds(Iy, I d I, I 11
S 12 (I, I2) — Sds(I1, I2), (11)
whereds denotes the usual spherical distance on the unit sghdreparticular we deduce that

dg (2(v1, (7)), @(71,(r)))

is bounded as a function ef On the other hand, if(r) = r(7)e!(!(7) is a parametrized geodesic
joining a(11) = ® (71, (r)) anda(re) = ®(v1,(r)), we have

), 2(11,(r))) = dy (re UV X)) < dength (a((r1, 2]))

'711
24 r2t’ (1)2 r(7)2 sin?(¢(1))I' ()2
/ ¢ T P R e e R T v

2 /
/ \/ = t( )? dr > dhyp(ree(h”,re@(b)f)

where! is any fixed imaginary unit ands,, the hyperbolic distance associated to the restriciify
of the metricg to B N L. If, by contradictiond(I;) # 6(I2), then the distance,, (re? (1)1, refl2)1)
tends to infinity ag- goes tol, contradicting (11). Therg(l;) = t(r1) = t(m2) = 6(I2): i |s constant
ons.

Therefore we have thag(r/2) is ruled by radii of the formy(r) = re'o! for some constant. If
to = m/2, then we are done. Suppose thgn# 7/2. SinceB(w/2) andB(/2) intersect ab and they
are three-dimensional submanifoldsHin the intersectiorV of their respective tangent space$ ahust
have dimensior? or 3. Letv be a vector inV and letr — re’t be the reparametrized geodesic with
initial velocity v. The geodesic lies on botB(7/2) andB(w/2), hencety = t = w/2. (A different proof
consists in showing that, i, # 7 /2, thenB(7/2) is not smooth at the origin).

The next step is to show that the restrictiondofo B(7/2) is an isometryl’4 of type(b) for some
isometryA of the spheré&. We have that

dy (D(11,(1), @11, (1)) = dy (re3V) BV (12)

We now prove an improvement of (11).

Lemma 4.12. )
. I 2 _ —
71n1_>mld <r62 ,re? ) = 2d§([1,[2).

Proof of the lemmaOnly the casel; # I, is interesting. LetD (7/2,C(J)) be the two dimensional
manifold introduced in Lemma 4.7 which contains the repatsized geodesics — rez’i, j = 1,2.
The metricg restricted to the totally geodesic surfabegw/2,C(.J)) was discussed earller in this sub-
section, where we gave it the expression (9). Switip) = 1/cosh(2p) < 1, the surface can be iso-
metrically imbedded as a surfasén R?, with parametric equation@:(s, 8), v(s, ), z(s, 0)) = x(s, ),
where:

u = p(s) cos(0);

= p(s) sin(6);

zZ = S.
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Heres > 0,6 € [—m, 7] andp : [0, +00) — [0, 1/2) is a smooth, increasing function such thét) = 0
andlim,_,, p(s) = 1/2. The relationship betweenandV is the following: iffos V' (0)? + 1do = p,
thenp(s) = 1¥(p). Now, r = constant — 1 corresponds te@ = constant — oo, and the choice of;
andI, corresponds to a choice 6f andf,. Let k be the metric on the surface. It is elementary that

. 1
lim dg(x(s,61),x(s,02)) = §d§1(91,92)

S§—00

is one-half the distance betweénandf, on the unit circle, which is the same as one-half the distance
betweenl; andlis in S. O

Equations (11) and (12) together with Lemma 4.12 imply that® : S — S is an isometry of the
spheres, i.e. ®|g(; /2y = Ty |(r/2)- IN conclusion,de1 o ® is an isometry that fixeR N B andB(7/2)

and hence its (real) differential at the orig('[ﬁip‘1 o ®),[0] : ToB — TyB is the identity map. Therefore
TJl o @ is the identity map as well and the theorem is proved. O

4.2 Relation with the spacef?(B)

If we restrict the metrig to a three-dimensional spher8? of radiusr, in spherical coordinates we get

2 24in2¢
dsy = ———di® i dI?
Srg? (1—1r2)2 * (1 —72)2 4 472 sin?(¢) 411
whose corresponding volume form is
dVol,gs (ret!) = rem dtdAs(I)

(1 =72)((1 —r2)2 + 4r2sin’(t))

whered Ag denotes the area element of the two-dimensional sghefiehis volume form (after a nor-
malization) induces a volume form on the bound&#yof the unit ball: ifu = e/ € S?, we have

(1 —7r2)r3sin?s

dVol = lim (1 —r?)dVol = li dtdAs(I
olgs (1) T—1>1’1H7( r)dVolgs (ru) o1 (1 —7r2)((1 —72)2 4 4r2sin?(s)) s(J)
= idtdAg(I).

Notice thatdV olgs is the product of the usual spherical metric on the two-dsiwral spher& with the
metricdt on circlesS? which appears in the definition of Hardy spaces given in [Mjreover in [10] it
is proven that any € H?(B) has radial limit along almost any radius and hence, dendtiity a slight
abuse of notation) the radial limit by itself, we have

2 1 " otY)2 1 o otY)2
L sPavels =3 [ i paassn =5 [ [ it

1 s
= 5 [ 191 eydAs(D) = F117 Byecey
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4.3 Proof of Theorem 1.2

We begin by showing thé&B, m) has constant negative curvatutdeuristically, a Riemannian metrig
satisfying the assumption of the theorem has an isometrypgnéth dimension

dim(B) + dim(S?) 4+ dim(O(3)) =4+ 3+ 3 = 10,

which is maximal for a four-dimensional Riemannian mamifdience (B, m) has constant curvature.

More precisely, we show that the isometry gralipcts transitively on orthonormal frames, a prop-
erty which is known to imply constant sectional curvatureive@ pointsa, b in B and orthonormal
frames{e;(a) : | = 0,1,2,3} and{¢(b) : I = 0,1,2,3} in T,B andT;B, respectively, we find an
isometryy in Z such that its (real) differentiap, satisfies:p.[ale;(a) = €;(b). We in fact exhibity
mappinga to 0 and such thap,, maps the chosen orthonormal framdé B to a fixed orthonormal basis
e0(0),e1(0),e2(0),e3(0) of TpB, whereey(0) is the vector tangent to the positive real half-axis. The
isometryM,(q) = (1 —qga)~* = (¢ — a) mapsa to 0, hence(M, ). sends;(a) to a orthonormal frame in
ToB ¢, forl = 0,...,3. For a suitable choice af with |u| = 1, the isometryy — ¢ - v has differential
mappingej, to ey (0), ande;(0) to e/ (0) (j = 1,2, 3). The isometrieg = x4yl — Ta(q) = z+yA(l),

A being a fixed element ad(3), all have differentials fixing:(0). We can find one mapping’(0) to
e(0) for I = 1,2,3. The composition of these three isometries is the desiedasy ¢.

For I € S, consider the subgroup; of Z of the isometries fixing the slicB;; which consists of the
regular M6bius map3/,, with ¢ in B;, and of the mapg — ¢-e*!. If x; : x+yI — x+yi is the natural
bijection fromB; to the unit disc in the complex plangglfxl‘l identifiesZ; with the usual Poincaré
group in the complex disc. Hence, the restrictiomofo B; is (isometric to) a constant multiple of the
Poincaré metric, which has constant negative curvature.

The hyperbolic metrien is realized by the standard Poincaré model on the BallThe metricm
restricted toB; is realized as#d]fn(w) = )\2% (for w in B; andd in T,,(B;)), with XA which is
independent of , since different slices intersect along the real diameft@. de might set\ = 1. Each
slice B; is totally geodesic, since it is the set of the points fixed bysametry of the typer + yJ —

x +yB(J), whereB is an element 0D (3) fixing +1 and no other element &f

Then, the radiir — ru = 7, (r) (with « fixed inH, |u| = 1) are (reparametrizations of) geodesics
of (B, m), not just of its restriction to a slice, and the distance fiomcon each of them is obtained by
integratingdr/(1 — r?). The three-dimensional sphere$® = {¢ : |q| = r} are then metric spheres
centered af for the metricm. By Gauss Lemma, they are orthogonal to the cuyesix in (0,1). An
argument similar to the one above shows that the subdfguap the isometries fixing) acts transitively
on the bundle of the orthogonal frames at points®f, hencerS? is isometric to the usual three-spheres
with a multiple of the spherical metric. Sindg NrS? is isometric to a metric one sphere in the Poincaré
model of the hyperbolic metric (in dimension two), for eddin S, rS? is similarly isometric to a metric
three-sphere in the Poincaré model of the hyperbolic métridimension four). But we said thas?3
and~, are orthogonal in their point of intersection; they are bietimetric to the corresponding objects
in the Poincaré model; the sum of their tangent spaces is kiméevtangent space: this shows that the
metricm coincides in fact with the Poincaré metric.

Concluding,we have shown that the hyperbolic Poincaré metric is inmangder regular Mobius
maps, but this contradicts a result of Bisi and StoppatoRémark 5.
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5 Metric in the right half space H*
Consider the right half spadét = {¢ € H| Re(¢q) > 0}. The Cayley mag' : B — H,

Clg)=(1—-¢q) '(1+q),

is a regular bijection from the quaternionic unit ball ortte fquaternionic right half space with regular
inverse the functio~! : Ht — B,

CMg)=(1+q (g—1).

The aim of this section is to study the ima@é", i) of (B, g) under the mag’, whereh is the pullback
of the metricg by the mapC—!. In the introduction we labeleg andh by the same letter, sindg is by
definition an isometry fron{B, ¢) to (H", ). Letu € H' and letv = v; + v9 be a tangent vector in
T, H" = L, + Lt.. The length ofy with respect tdh is

10| h(u) = ‘(C_l)* [u](v) |g(cfl(u))

where (C~1),[u] is the real differential o~ at the pointu € H*. Recalling the decomposition of
the real differential of a regular function in terms of it&esland spherical derivatives,if= v + v9 €
Ly, + L7, we can write

(C™[u](v) = v10.C7 (1) + v20,C 71 (u) = vy

2
Truz  2Hruf
Hence(C ). [u] preserves the decompositi@hH* = L;, + Ly, and we get

’U’i(u) = }1 2\2 1 4‘2}1‘2 +
(1= C= (w)[?)? [1 4 ul |

1 4

[v2?
1—CHu)?|? |1 +ul*

slvi]* + |va|?.

1
~ 4Re(u) 4|u|?

If v € Ly, then its length is, not surprisingly, the hyperbolic lengthhe hyperbolic half planéﬂz =
{z +yl,|z > 0,y € R}. Notice thatC' mapsB; to H for any! € S and it maps the totally geodesic
submanifoldB(7/2) to H* (7/2) := C (B(n/2)) = {¢ € H"||q] = 1} i.e. the right half of the
three-dimensional unit sphe. Then it is not difficult to verify that the isometry group @+, h) is
generated by the images undewof isometry of(B, ¢) of type (a), (b) and(c),

(&) linear maps preserving the positive real half-axis,
q > qA,
with A > 0;
(b") isometries of the sphere of the imaginary units, whictpolar coordinates > 0, t € [0,7/2),

I € Sread as

qg=rel = Ty(q) = retAl)

whereA : S — Sis an isometry of;
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(c) the inversion in the three-dimensional unit (half) epd

1
g —.

Acting onH* (7 /2) by means of isometries of tyge’) we obtain totally geodesic regions of the form
{q € H" ||q| = R} for R > 0, that can be sliced in totally geodesic two-dimensionahsaifolds,
corresponding to submanifolds of tyg&¢, C'(J)) in the ball case.

In this setting it is possible to introdu¢®rocyclesi.e. hyperplanes of points with constant real part,
H. = {q € H' | Re(q) = ¢} for some constant > 0. They deserve the name of horocycles because
their intersection with each slide; is a proper horocycle in the hyperbolic half plai]%ié. Isometries of
type (a’) map horocycles one into another.

If we restrict the metric: to horocycles we obtain that the length of a veetet vy + vy € T, H, =
RI, + qu tangent to the horocycl#. at the pointu € H,., can be written as

ol = g lor 2 + .
© 42 4(c? + | Im(u)|?)

|vg|?

and the corresponding volume formeats ¢ + x17 + x9j + x3k IS

dVolgyc(u)
8c(c? + [ Tm(u)[?)’

dVoly,(u) =

(since the component if;, is one-dimensional) whemV olg,.(u) = dxidzedxs is the standard Eu-
clidean volume element. If we want to define a (non-degeegvaiume formdV ol 5+ on the boundary
OH™ of the quaternionic right half space we can not directly tidieelimit of dV oly, asc approaches,
we need indeed first to normalize it. For amy OH™, we define

. . dVolgye(u + c) dVolgyc(u)  dVolgy.(u)
l = 1 = 1 = =
dVolgu+ (u):=lim, c(dVoly,(u+ ) = Im o T O ~ SIm)P 8Ju]?
(13)

5.1 Hardy space onH™

We will show that, as in the case of the metgion B, the invariant metrid: on H* introduced in the
previous section and in particular the corresponding veldonm (13), is related with the quaternionic
Hardy space on the right half spale. It is possible to define the Hardy spabé(H") on H as the
space of regular functions : H*™ — H of the form,

f(a) = /O " ewp(dc,

with F: RT — H, such that

+00
2 2(H+Y) -— F 2d .
1B o= [ QPG <+
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With this definition, the reproducing kernel &f%(H™) is a function

400
ba.w) = k(@) = [ GG
0
whereG : RT — H is such that
+oo +oo
Fw) = (k) s = /O GIOF(Q)dC = /0 SR (Q)d.

HenceG has to satisfyG(¢) = e~¢* which impliesG(¢) = e=¢?, i.e. that the kernel function is

+oo i
kw(q) = /0 e e (.

To obtain a closed expression kbf,(¢), let firstq be a (positive) real number. In this cageommutes
with all points inH™* and we can write

T ~clar) 1
kw(q) = ST = ——.
@ /0 ‘ ¢ q+w
Consider now the function — (¢ + w)~* (here the regular reciprocal is defined with a slight gereral
ization of Definition 2.10, see [12]). This function is reguind it coincides witly +— (¢ +w)~' on real
numbers. Thanks to the Identity Principle for regular fiord, Theorem 1.12 in [12], we obtain that the
reproducing kernel ig,,(¢) = (w +7)~* = [ e~We~¢7d(.
Another way to obtain the reproducing kernel Bd(H) is the following.

Proposition 5.1. Denote byk 2 ) and byk 2+ the reproducing kernels of the Hardy space on the
unit ball 72(B) and on the right half-spacél/?(H") respectively. Le€ : B — H™* be the Cayley map,
C(q) = (1 —¢q)"'(1 +q). Foranyz,w € H¥, the functionk 2z (C~'(w), C~'(z)) is a rescaling of
the reproducing kernel off%(H™):

]{7H2(IB%)(C_1(w),C_1(z)) = %( + 2)k g2y (w, 2)(1 + ).

Proof. The mapC—!, having real coefficients, is slice preserving. Hence, WEQEENPOSE: 172 () With
C~1 preserving (left) regularity in the first variable and (fighanti-regularity” in the second one. We
have, then,

k2 (C71(2), C7Hw)) = (1 — ¢C~ 1 (w)) [

ly=c=1(z)

= (1-207(2)Re(C (w)) + C 1 (2)*|C Y (w)]?) " (1 = C7 ()0 (w))

= (14 2?1+ w|* (|1 +w* (1 4+ 2)? —2(1 — 2%)(1 — [w]*) + (1 — 2)*|1 — w|*)”
(142N A+ 2) 0 +w) - (1—2)(1—w) (1+w)™

(2% + 2z Re(w) + ]wyz)_l 2(z+w)(1+w)

1

1
4
— %(1 +2)(z4+w) " (1+w) = %(1 + z)kHz(H+)(w, 2)(1 + ).

=142
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Now we want to show that the volume form 6fl* obtained in (13) is the natural volume form for
the Hardy spacd?(H™). In fact, letf(q) = [,"* e 9F(¢)d¢ € H?(HT). For anyI € S, we can
decompose the functioh asF'({) = F1(¢) + F»(¢)J whereJ is an imaginary unit orthogonal tband
Fi,F5 : R — Lj. Itis possible to prove (see [2]) that functions/f? (H™) have limit at the boundary
for almost any poinyl € OH™ = {vJ | v > 0,J € S}. If we denote byl Ag the usual surface element
of the unit two-dimensional sphef& thanks to equation (13) and to the orthogonality/ gind J, we
can write

9 B 9 dVolpyc(yl)
| ranPavelsson = [ pnpttiets
400 o0 2.2
_ —Cyl y-dAs(I)
/ ( LI eor@ad 2og ) ay

= é/g </o+w /om e~ (Fy(C) + Fa(C)J) d¢
= é/g </0+Oo /;Oo e~ VTR (Q)dC + /;OO e~ Fy(¢)Jd¢
= é/g </0+Oo /;Oo e~ VTR (Q)dC e /;w /0+oo " Fy(¢)d¢

2 ([T iep [ E) Pa) dast)

where the last equality is due to the classical Plancherebiiédm. Therefore, thanks again to the orthog-
onality of I andJ,

2 dy) dAs(I)

2 dy) dAs(I)

2
dy) dAs(I)

[ senpavelsswn =7 [ ([ r@rac) ass =22
- Y Olor+ Y1) =7 s Uy s\)=m H2(H+)*

5.2 A bilateral estimate for the distance and an applicatiorto inner functions

In the right half space model it is easier to prove a bilatestimate for the distance associated with the
invariant metrich. Fix a imaginary unit/y and define the projection

m:x+yl = x+yl, (14)

with = real andy > 0. Letdy,, be hyperbolic distance i]ﬁ[*0 ={x+ylp: >0,y R} dyyis
the distance associated with the Riemannian metric tehgor = (da” + dy®)/(42*). Let nowds be

the usual spherical distance on the unit two-dimensiontaig$, associated with the metric tenstnﬂg.
Then, the metric tensor associated withan be decomposed as
Y2

S
2+ )0

ds% = ds%yp +
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Theorem 5.2. Letq; = z; + y;I;, j = 1,2, be points inH™: z; > 0, y; > 0. The following estimate
for the distance functiod;, associated with the metric holds:

dn(q1,q2) = dpyp(m(q1),7(g2)) + min { ’z B
J

where~ means that we have a lower and an upper estimate for the righd Iside in terms of the left
hand side, with multiplicative constant, Cs independent of1, ¢s.

j =1 2} dg(ll,lg),

Proof. We may suppose that /|qi| < y2/]a:|

The upper estimate is elementary. hdte a curve going from; tozy +y1 15 € H}; leavingz = 1
andy = y; fixed, and varying the imaginary unitonly. Suppose, more, thatvaries along a geodesic
onS, which joinsI; andl,. Then,

length = dss = ds(Iy, I
ength(v) /2‘(11‘ ss = 2‘ ‘S( 1,12).

Let nowd be a hyperbolic geodesic if,, joining 1 + y1 12 andgs: length(0) = dpyp(7(q1), m(q2)),
which proves the estimate.
The lower estimate is more delicate. Lebe a curve ifH™ joining ¢; andg,. Then,

length(y Lﬂm>/ Aty > dnyp(m(q1), 7(2))- (15)

We have then to show that
/dsh Z ﬁdg(fl,fg). (16)

Since the right hand side of (16) is bounded, and we havedslnga@ved (15), it suffices to show that (16)
holds whendy,,,(7(q1),7(¢2)) < 1. By elementary hyperbolic geometry, see the “sixth modelf7],
and using the fact that dilatiops— Ap are isometric fol > 0, we can assume thatq; ) andr(gz2) both
lie inthe square),, = {z+ylo: 1 <z <2, n<y<n+1} C Ly, for some integer. > 0. Consider
nowgs = x3+ysls, y3 > 0the point alongy which minimizesys/|q3|. We can assume that~) (hence,
7(g3)) is contained iQ,, = {z =z +ylp: ©>0,y>0,1/2<x<2 n—1/2<y<n+3/2},
otherwiselength(vy) > 1 (which would imply the estimate (16) we are proving). et 0 be the angle
between the positive real half axis"™ and the half line originating at and passing through(qs). For
j=1,2,3:

t; ~ sin(t;) = y;/lqjl-
We have two cases. Eithgs/|qs| > 1/2 - y1/|q1|, but then we are done because

Y 7.2
ds2 > I ge (I, I
/y2‘q’ § - 2‘q1‘ S( 1 2)
Ory3/|q3| < 1/2 . y1/|q1|. Thenn = 0, and
/dsh > length(ﬂ(y)) 2 max(|m(z1) — w(z3)|, |7 (22) — 7(23)]) > |7(21) — 7(23)]
g
ZJ yl ~ ‘ ’dS([hIZ)

Overall,fV dsp, 2 %dg([h[g), as wished. O
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Changing coordinates from the right half plane to the badl, have the same bilateral estimate in the
ball model.

Corollary 5.3. Letd, be the invariant distance associated with the megria the ball model and let
q1, g2 be points of8. If 7 is defined as in (14), then:

dg(q1;42) = dnyp(7(q1), 7(g2)) + min {Hfi”qa tj=1 2} ds(I1, I).
j

A regular functionf : B — H is inner if (i) it maps B into B; (ii) the limit asr — 1 of f along the
radiusr — ru exists fora.e. u in OB and it has unitary norm.

Theorem 5.4. Let f : B — B be an inner function. Thery; is Lipschitz with respect to the metricif
and only if it is slice preserving. In this case, it is a comtian.

It is well known (see [10]) that regular, bounded functioasdnradial limits along almost all radii,
f(e”) = lim f(re”)
r—1

exists fora.e. (t,I) € [0,7] x S. We start with a Lemma which might have independent intefest
instance, it provides a different route to prove the classiion of the isometries for the metrgc

Lemma 5.5. If ¢ : B — B is Lipschitz with respect to the meticand

lim p(retfl) = et € OB a7)
r—1

exists, withs € [0, 7] and.J; € S; then for eachl; in S, if the limitlim,._,; p(re’2!) exists, then

lim @(ret!2) = 572 (18)

r—1

for someJ, in S. The values of and s in (18) are the same as in (17).

Proof. Letu; = e!i, with the same € [0, «1]. By Lipschitz continuity,

A

d(ruy,rusg)
t|[; — I

M < | — I

(I—r)+rt

< 1.

d(p(rur), p(rug))

Q

(19)
By the lower estimate in Corollary 5.3 and (19),

dhyp (T (p(run)) , 7 (p(rus))) < 1.

But this and elementary hyperbolic geometry imply thatliifi, ,; p(ru;) = e*/t, then the limit
lim, 1 7 (¢(rug)) = L exists andL = e*0 (recall thatr : B — L;,). Sincelim,_,; ¢(ret2) = L
exists by hypothesis andis continuous, it must be(L) = e*/0, thenL = e*/2 for someJ, in S.

O
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The statement of Lemma 5.5 can be sharpened in several walysskance, the Lipschitz assump-
tion might be weakened to a sub-exponential growth assompti
We proceed with the proof of Theorem 5.4.

Proof of Theorem 5.4Being inner,f has boundary limits along radti — re! for a.e. I in S andt in
[0, 7]. We write for such couples df, I): f(e'!) := lim,_,; f(re’). We can assume without loss of
generality that the limit exists for two antipodal imagipamits L and — L, and hence, in view of the
Representation Formula 2.5, for ahyc S. If f is regular and Lipschitz with respect to the distadge
thanks on the one hand to the Representation Formula 2.Beather hand to Lemma 5.5, we have that
foranyl € S

blt) + Ie(t) = f(e!!) = @D

whereb(t), c(t) € H, ands(t) € [0,27] andJ(t,I) € S. ThenRe(f(e!!)) = Re(f(e!r)) foranyL € S
and in particular for, = —1I, which gives

Re(b(t)) — (I,c(t)) = Re(b(t) + Ic(t)) = Re(b(t) — Ic(t)) = Re(b(t)) + (I,c(t))

(where(-,-) denotes the standard scalar producRit). Sincel is any imaginary unit, we necessarily
have that(t) € R.

Also, comparing imaginary parts, for ayi, Lo € S we have|Im(f(e'*1))| = |Im(f(et£2))].
Then, ifb = by + b1 K with by,b; € R, K € S (omitting the dependence ai), whenZ; = K and
Ly = —K we get

b1+l = [Tm(bo+b1 K +cK)| = [Im(f(e"™))] = [ Tm(f(e™"))| = [Tm(bo+b1 K — cK)| = [b1 —c].
Therefore almost every< [0, 7] belongs toD U E:
D={t: c(t)=0}, E={t: bi(t) =0}.

Consider first the case whenc D holdsa.e.. Thenf(e!!) = b(t) for almost everyt. Since boundary
values uniquely identifyf (see [10]) and by invariance under rotationsSpfve deduce that

flre') = @(rt),

for some functiond. In particular,f can not be opend¢m(f(B)) < 2), hence (see Theorem 7.4 in [12])
it must be constant; thus it is not inner. ThErhas positive measure. Foin E,

b(t) + Ic(t) = f(e) = es®IGD)

with b andc real valued, hencd = I:
f(etl) _ es(t)l (20)

for tin F. By the Splitting Lemma 2.7, i L I is fixed inS, then there are holomorphic functiohsG
onB; such that
f(re™) = F(re™) + G(re™).J.

By (20), G(e!!) = 0 for ¢ in E. SinceFE has positive measure, this implies tifatanishes identically
and hencef (re™) = F(re™!) forall0 < r < 1and0 < 7 < 7. That s, f is slice preserving.

25



We have to verify thayf is a contraction with respect to the metgicand this can be verified at the
infinitesimal level. Lely be a point in a fixed slic® N L;. (i) Since f is slice preserving, its restriction
to B N Ly is an inner function in the one dimensional sense, henceaitcentraction of the Poincaré-
hyperbolic metric oB N L;. (i) On the other hand, preserving the slicgsacts isometrically in th&
variables, with respect to the spherical metricSor(iii) Now, the space tangent N L; at ¢ and the
space tangent tBe ¢ + S at ¢ form an orthogonal decomposition, with respect to the roetriof the
space tangent 8. From the expression far given in (8) and facts (i)-(iii) one easily deduces thas
a contraction. O
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