Skip to main content
Log in

Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

We study the magnetic-based motion control of a sperm-flagella driven Micro-Bio-Robot (MBR), and demonstrate precise point-to-point closed-loop motion control under the influence of the controlled magnetic field lines. This MBR consists of a bovine spermatozoon that is captured inside Ti/Fe nanomembranes. The nanomembranes are rolled-up into a 50 μm long microtube with a diameter of 5-8 μm. Our MBR is self-propelled by the sperm cell and guided using the magnetic torque exerted on the magnetic dipole of its rolled-up microtube. The self-propulsion force provided by the sperm cell allows the MBR to move at an average velocity of 25 ±10 μm/s towards a reference position, whereas the magnetic dipole moment and the controlled weak magnetic fields (approximately 1.39 mT) allow for the localization of the MBR within the vicinity of reference positions with an average region-of-convergence of 90 ±40μm. In addition, we experimentally demonstrate the guided motion of the MBR towards a magnetic microparticle with applications towards targeted drug delivery and microactuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Purcell EM (1977) Am J Phys 45(1):3–11

    Article  MathSciNet  Google Scholar 

  2. Mallouk TE, Sen A (2009) Sci Am 300:72–77

    Article  Google Scholar 

  3. Loget G, Kuhn A (2011) Nat Commun 2(535):1–6

    Google Scholar 

  4. Ghosh A, Fischer P (2009) Nano Lett 9(6):2243–2245

    Article  Google Scholar 

  5. Peyer KE, Zhang L, Nelson BJ (2013) Nanoscale 5(4):1259– 1272

    Article  Google Scholar 

  6. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Nature 436(6):862–865

    Article  Google Scholar 

  7. Zhang L, Petit T, Peyer KE, Nelson BJ (2012) Nanomed: Nanotechnol. Biol Med 8(7):1074–1080

    Google Scholar 

  8. Bell D J, Leutenegger S, Hammar KM, Dong LX, Nelson BJ (2007) In: Proceedings of the IEEE international conference in robotics and automation (ICRA). pp 1128–1133

  9. Tottori S, Zhang L, Qiu F, Krawczyk K, Franco-Obregn A, Nelson B J (2012) Adv Mater 24(6):811–816

    Article  Google Scholar 

  10. Wang J, Gao W (2012) ACS Nano 6(7):5745–5751

    Article  Google Scholar 

  11. Magdanz V, Sanchez S, Schmidt OG (2013) Adv Mater 25(45):6581–6588

    Article  Google Scholar 

  12. Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) Int J Robot Res 28(9):1169–1182

    Article  Google Scholar 

  13. Khalil ISM, Pichel MP, Abelmann L, Misra S (2013) Int J Robot Res 32(6):637–649

    Article  Google Scholar 

  14. Pan Y, Du X, Zhao F, Xu B (2012) Chem Soc Rev 41:2912–2942

    Article  Google Scholar 

  15. Khlebtsov N, Dykman L (2011) Chem Soc Rev 40(3):1647–1671

    Article  Google Scholar 

  16. Mei YF, Huang G, Solovev AA, Urena EB, Munch I, Ding F, Reindl T, Fu RKY, Chu PK, Schmidt OG (2008) Adv Mater 20(21):4085–4090

    Article  Google Scholar 

  17. Bermudez Urena E, Mei YF, Coric E, Makarov D, Albrecht M, Schmidt OG (2009) Phys D: Appl Phys 42 (5)

  18. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Ann Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  19. Kummer MP, Abbott JJ, Kartochvil BE, Borer R, Sengul A, Nelson BJ (2010) IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  20. Xi W, Solovev AA, Ananth A, Gracias D, Sanchez S, Schmidt OG (2013) Nanoscale 5:1294–1297

    Article  Google Scholar 

  21. Kagan D, Benchimal MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Angew Chem Int Ed 51:7519–7522

    Article  Google Scholar 

  22. Solovev AA, Xi W, Gracias D, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) ACS Nano 6:1751

    Article  Google Scholar 

  23. Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) IEEE Trans Robot 30. doi:10.1109/TRO.2013.2281557

  24. Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Appl Phys Lett 103:172404

    Article  Google Scholar 

  25. Keuning JD, de Vries J, Abelmann L, Misra S (2011) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 421–426

  26. Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 2035–2040

  27. Cummins JM, Woodall P F (1985) J Reprod Fert 75:153– 175

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente. The research leading to these results has also received funding from the Volkswagen Foundation (# 86 362) and the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 311529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam S. M. Khalil.

Additional information

Islam S. M. Khalil and Veronika Magdanz equally contributed towards the preparation of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(WMV 7.54 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, I.S.M., Magdanz, V., Sanchez, S. et al. Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. J Micro-Bio Robot 9, 79–86 (2014). https://doi.org/10.1007/s12213-014-0077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-014-0077-9

Keywords

Navigation