Skip to main content
Log in

Predicting Mechanistic Detachment Model due to Lead-Contaminated Soil Treated with Iraqi Stabilizers

  • Hydraulic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Recent studies have investigated the influence of Iraqi stabilizer materials on the stability of artificially lead-contaminated soil. Prior research has not been able to predict the non-linear erodibility model (Wilson model) of mechanistic parameters (b0 and b1) from jet erosion tests (JETs) due to lead-contaminated soil treated with different stabilizers. The aims of this research are to 1) mathematically evaluate the detachment parameters (b0 and b1) of the Wilson model from JETs of lead-contaminated soil samples treated with different percentages of three common Iraqi stabilizers (lime, cement, and bitumen) at different curing times (24 hrs, 72 hrs, and 168 hrs), and 2) to develop relationships between the parameters, b0 and b1, in addition to the physical and chemical soil characteristics. JETs are utilized to determine the mechanistic erodibility parameters b0 and b1 from observed scour data of packed contaminated soils at optimum soil moisture level. The results show that observed scour depths are reduced for treated lead-contaminated soils in JET experiments. The observed b1 values increased at different curing times, while a significant reduction in b0 is observed. The proposed formulas are able to mathematically predict the influence of different stabilizers on the mechanistic erodibility parameters (b0 and b1) of treated contaminated soils with a prior JET experiment based on stabilizer coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, M. N., Al-Madhhachi, A. T., and Esmael, S. A. (2019). “Quantifying soil erodibility parameters due to wastewater chemicals.” International Journal of Hydrology Science and Technology, Vol. 9, No. 5, DOI: https://doi.org/10.1504/IJHST.2019.10016884.

    Google Scholar 

  • Al-Layla, M. T., Al-Dabbagh, A. W., and Jaro, M. N. (2007). “Tensile strength of natural and lime stabilized mosul clay.” Journal of Al-Rafidain Engineering, Vol. 16,No. 2, pp. 1–11.

    Google Scholar 

  • Al-Madhhachi, A. T., Fox, G. A., and Hanson, G. J. (2014b). “Quantifying the erodibility of streambanks and hillslopes due to surface and subsurface forces.” Transactions of the ASABE, Vol. 57,No. 4, pp. 1057–1069, DOI: https://doi.org/10.13031/trans.57.10416.

    Google Scholar 

  • Al-Madhhachi, A. T., Fox, G. A., Hanson, G. J., Tyagi, A. K., and Bulut, R. (2014a). “Mechanistic detachment rate model to predict soil erodibility due to fluvial and seepage forces.” Journal of Hydraulic Engineering, ASCE, Vol. 140,No. 5, pp. 04014010. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000836.

    Article  Google Scholar 

  • Al-Madhhachi, A. T., Hanson, G. J., Fox, G. A., Tyagi, A. K., and Bulut, R. (2011). “Measuring erodibility of cohesive soils using laboratory jet erosion tests.” Proc., World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, ASCE, Palm Springs, CA, USA, DOI: https://doi.org/10.1061/41173(414)244.

    Google Scholar 

  • Al-Madhhachi, A. T., Hanson, G. J., Fox, G. A., Tyagi, A. K., and Bulut, R. (2013a). “Measuring soil erodibility using a laboratory “mini” jet.” Transactions of the ASABE, Vol. 56,No. 3, pp. 901–910, DOI: https://doi.org/10.13031/trans.56.9742.

    Google Scholar 

  • Al-Madhhachi, A. T., Hanson, G. J., Fox, G. A., Tyagi, A. K., and Bulut, R. (2013b). “Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests.” Transactions of the ASABE, Vol. 56,No. 2, pp. 489–504, DOI: https://doi.org/10.13031/2013.42669.

    Article  Google Scholar 

  • Al-Madhhachi, A. T. and Hasan, M. B. (2018). “Influence of in-situ scaling on variability of polluted soil erodibility parameters.” Pollution, Vol. 4,No. 4, pp. 617–633, DOI:10.22059/poll.2018.252263.393.

    Google Scholar 

  • Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., and Mittal, N. (2008). “Heavy metal accumulation in vegetables irrigated with water from different sources.” Food Chemistry, Vol. 111,No. 4, pp. 811–815, DOI: https://doi.org/10.1016/j.foodchem.2008.04.049.

    Article  Google Scholar 

  • AST. (2006). “Section 4: Construction.” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • Burnham, C. P. and Mutter, G. M. (1993). “The depth and productivity of chalky soils.” Soil Use and Management, Vol. 9,No. 1, pp. 1–8, DOI: https://doi.org/10.1111/j.1475-2743.1993.tb00919.x.

    Article  Google Scholar 

  • Chepil, W. (1959). “Equilibrium of soil grains at the threshold of movement by wind 1.” Soil Science Society of America Journal, Vol. 23,No. 6, pp. 422–428.

    Article  Google Scholar 

  • Conner, J. R. (1990). Chemical fixation and solidification of hazardous waste, Van Nostrand Reinhold Company, New York, NY, USA.

    Google Scholar 

  • Criswell, D. T., Al-Madhhachi, A. T., Fox, G. A., and Miller, R. B. (2016). “Deriving erodibility parameters of a mechanistic detachment model for gravels.” Transactions of the ASABE, Vol. 59,No. 1, pp. 145–151, DOI: https://doi.org/10.13031/trans.59.11490.

    Article  Google Scholar 

  • Daly, E. R., Fox, G. A., Al-Madhhachi, A. T., and Storm, D. E. (2015). “Variability of fluvial erodibility parameters for streambanks on a watershed scale.” Geomorphology, Vol. 231, pp. 281–291, DOI: https://doi.org/10.1016/j.geomorph.2014.12.016.

    Article  Google Scholar 

  • Einstein, H. A. (1950). The bed-load function for sediment transport in open channel flows, SCS Technical Bulletin No. 1026, USDA, Washington, D.C., USA.

    Google Scholar 

  • Einstein, H. A. and El-Samni, E. S. A. (1949). “Hydrodynamic forces on a rough wall.” Reviews of Modern Physics, Vol. 21,No. 3, pp. 520.

    Article  Google Scholar 

  • Fox, G. A., Felice, R. G., Midgley, T. L., Wilson, G. V., and Al-Madhhachi, A. T. (2014). “Laboratory soil piping and internal erosion experiments: Evaluation of a soil piping model for low-compacted soils.” Earth Surface Processes and Landforms, Vol. 39,No. 9, pp. 1137–1145, DOI: https://doi.org/10.1002/esp.3508.

    Article  Google Scholar 

  • Hanson, G. J. (1990). “Surface erodibility of earthen channels at high stresses part ii-developing an in situ testing device.” Transactions of the ASAE, Vol. 33,No. 1, pp. 132–0137.

    Article  MathSciNet  Google Scholar 

  • Hanson, G. J. and Cook, K. R. (2004). “Apparatus, test procedures, and analytical methods to measure soil erodibility in situ.” Applied Engineering in Agriculture, Vol. 20,No. 4, pp. 455–462, DOI: https://doi.org/10.13031/2013.16492.

    Article  Google Scholar 

  • Hanson, B., Grattan, S. R., and Fulton, A. (1999). Agricultural salinity and drainage, University of California Irrigation Program, University of California, Davis, CA, USA.

    Google Scholar 

  • Hasan, M. B. and Al-Madhhachi, A. T. (2018). “The influence of crude oil on mechanistic detachment rate parameters.” Geosciences, Vol. 8,No. 9, pp. 332. DOI: https://doi.org/10.3390/geosciences8090332.

    Article  Google Scholar 

  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., and Zadhoush, A. (2012). “A simple review of soil reinforcement by using natural and synthetic fibers.” Construction and Building Materials, Vol. 30, pp. 100–116, DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.045.

    Article  Google Scholar 

  • Khanal, A. and Fox, G. A. (2017). “Detachment characteristics of root-permeated soils from laboratory jet erosion tests.” Ecological Engineering, Vol. 100, pp. 335–343, DOI: https://doi.org/10.1016/j.ecoleng.2016.10.081.

    Article  Google Scholar 

  • Khanal, A., Fox, G. A., and Al-Madhhachi, A. T. (2016). “Variability of erodibility parameters from laboratory mini jet erosion tests.” Journal of Hydrologic Engineering, ASCE, Vol. 21, No. 10, p. 04016030, DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001404.

    Article  Google Scholar 

  • Middleton, H. E. (1930). Properties of soils which influence soil erosion, Technical Bulletin No. 178, USDA, Washington, D.C., USA.

    Book  Google Scholar 

  • Mutter, G. M. (2018). “Utilization of water turbidity meter devices in estimating the aggregate stability of many artificially stabilized soils.” International Journal of Integrated Engineering, Vol. 10,No. 1, pp. 9–16.

    Article  Google Scholar 

  • Mutter, G. M., Al-Madhhachi, A. T., and Rashed, R. R. (2017). “Influence of soil stabilizing materials on lead polluted soils using jet erosion tests.” International Journal of Integrated Engineering, Vol. 9,No. 1, pp. 28–38.

    Google Scholar 

  • Onyelowe, K. C. and Okoafor, F. O. (2012). “Geochemistry of soil stabilization.” ARPN Journal of Earth Sciences, Vol. 1, No. 1, pp. 32–35.

    Google Scholar 

  • Ouhadi, V. R. and Goodarzi, A. R. (2006). “Assessment of the stability of a dispersive soil treated by alum.” Engineering Geology, Vol. 85,No. 1, pp. 91–101, DOI: https://doi.org/10.1016/j.enggeo.2005.09.042.

    Article  Google Scholar 

  • Palomo, A. and Palacios, M. (2003). “Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead.” Cement and Concrete Research, Vol. 33,No. 2, pp. 289–295, DOI: https://doi.org/10.1016/S0008-8846(02)00964-X.

    Article  Google Scholar 

  • Saeed, K. A., Kassim, K. A., and Nur, H. (2014). “Physicochemical characterization of cement treated kaolin clay.” Građevinar, Vol. 66,No. 6, pp. 513–521, DOI: https://doi.org/10.14256/JCE.976.2013.

    Google Scholar 

  • Salah, M. M. and Al-Madhhachi, A. T. (2016). “Influence of lead pollution on cohesive soil erodibility using jet erosion tests.” Environment and Natural Resources Research, Vol. 6,No. 1, pp. 88–98, DOI: https://doi.org/10.5539/enrr.v6n1p88.

    Article  Google Scholar 

  • Shubber, A. A. M., Diogo, J. F. R., and Liu, X. Y. (2009). “Low cost roads construction by soil stabilization using bituminous materials in al-anbar gypseous sandy soil.” Proc. 8th International Conference of Chinese Logistics and Transportation Professionals (ICCLTP), ASCE, Chengdu, China, pp. 2459–2466, DOI: https://doi.org/10.1061/40996(330)362.

    Google Scholar 

  • Wang, Z. F., Shen, S. L., Yin, Z. Y., and Xu, Y. S. (2015). “Rapid field evaluation of the strength of cement-stabilized clayey soil.” Bulletin of Engineering Geology and the Environment, Vol. 74,No. 3, pp. 991–999, DOI: https://doi.org/10.1007/s10064-014-0643-3.

    Article  Google Scholar 

  • Wardinski, K. M., Guertault, L., Fox, G. A., and Castro-Bolinaga, C. F. (2018). “Suitability of a linear model for predicting cohesive soil detachment during jet erosion tests.” Journal of Hydrologic Engineering, ASCE, Vol. 23,No. 9, pp. 06018004. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001690.

    Article  Google Scholar 

  • Wiles, C. C. (1987). “A review of solidification/stabilization technology.” Journal of Hazardous Materials, Vol. 14,No. 1, pp. 5–21, DOI: https://doi.org/10.1016/0304-3894(87)87002-4.

    Article  Google Scholar 

  • Wilson, B. N. (1993a). “Development of a fundamentally based detachment model.” Transactions of the ASAE, Vol. 36,No. 4, pp. 1105–1114.

    Article  Google Scholar 

  • Wilson, B. N. (1993b). “Evaluation of a fundamentally based detachment model.” Transactions of the ASAE, Vol. 36,No. 4, pp. 1115–1122.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Raghad Rashed, Graduate Student, Enviromental Engineering Department, College of Engineering, Mustansiriyah University, for providing assistance with the Jet Erosion Tests. The authors also acknowledge the staff of Mustansiriyah University Labortories (www.uomustansiriyah.edu.iq) for their valuable help, in fixing, and sustaining the apparatus utilized in this research. All equipment and materiales used in this study were provided by the authors and Mustansiriyah University Labortories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Sahib T. Al-Madhhachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Madhhachi, AS.T., Mutter, G.M. & Hasan, M.B. Predicting Mechanistic Detachment Model due to Lead-Contaminated Soil Treated with Iraqi Stabilizers. KSCE J Civ Eng 23, 2898–2907 (2019). https://doi.org/10.1007/s12205-019-2312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-2312-3

Keywords

Navigation