Skip to main content
Log in

Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics

  • Molecular Interactions
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The atomic force microscope (AFM), a member of the scanning probe family of microscopes, generates height maps of sample surfaces with subnanometer resolution. Importantly, AFM offers the opportunity to image samples with little or no treatment and under physiologically-relevant conditions, making it well-suited for investigating the structure of biological samples, including fixed or living cells and tissues. In addition to its high-resolution imaging capability, AFM used in force spectroscopy mode is a sensitive force measuring device, able to detect or exert forces ranging from the pico- to the nanonewton scale. Here we review a broad range of cell biological applications of AFM, including high resolution imaging of adherent cells, measuring cell adhesion down to the single-receptor level and characterizing the mechanical properties of cells. Furthermore, we present recent examples of how the combined use of AFM and advanced light microscopy techniques can provide complementary structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. E. A-Hassan, W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J, 74(3):1564–1578, Mar 1998.

    Google Scholar 

  2. Fraçois Ahimou, Ahmed Touhami, and Yves F Dufrêne. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast, 20(1):25–30, Jan 2003.

    Article  Google Scholar 

  3. Jordi Alcaraz, Lara Buscemi, Mireia Grabulosa, Xavier Trepat, Ben Fabry, Ramon Farré, and Daniel Navajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J, 84(3):2071–2079, Mar 2003.

    Google Scholar 

  4. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, Matt Longmire, and John Gurley. An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys., 65:164, 1989.

    Article  Google Scholar 

  5. W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A, 97(8):4005–4010, Apr 2000.

    Article  Google Scholar 

  6. G. I. Bell. Models for the specific adhesion of cells to cells. Science, 200(4342):618–627, May 1978.

    Article  Google Scholar 

  7. M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol, 2(6):313–317, Jun 2000.

    Article  Google Scholar 

  8. Martin Benoit and Hermann E Gaub. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs, 172(3):174–189, 2002.

    Article  Google Scholar 

  9. Eric Betzig, George H Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S Bonifacino, Michael W Davidson, Jennifer Lippincott-Schwartz, and Harald F Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642–1645, Sep 2006.

    Article  Google Scholar 

  10. Binnig, Quate, and Gerber. Atomic force microscope. Phys. Rev. Lett. 56(9):930–933, 1986.

    Article  Google Scholar 

  11. Christian A Bippes, Andrew D L Humphris, Martin Stark, Daniel J Müller, and Harald Janovjak Direct measurement of single-molecule visco-elasticity in atomic force microscope force-extension experiments. Eur Biophys J 35(3), 287–292, 2006.

    Article  Google Scholar 

  12. H.J. Butt, M. Jaschke Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6:1–7, 1995.

    Article  Google Scholar 

  13. G. T. Charras, P. P. Lehenkari, and M. A. Horton. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy, 86(1-2):85–95, Jan 2001.

    Article  Google Scholar 

  14. Aileen Chen and Vincent T Moy. Single-molecule force measurements.Methods Cell Biol, 68:301–309, 2002.

    Article  Google Scholar 

  15. Salvatore Chiantia, Jonas Ries, Nicoletta Kahya, and Petra Schwille. Combined afm and two-focus sfcs study of raft-exhibiting model membranes. Chemphyschem, 7(11):2409–2418, Nov 2006.

    Article  Google Scholar 

  16. B. Drake, C.B. Prater, A.L. Weisenhorn, S.A. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, and P.K. Hansma. Imaging crystals, polymers, and processes in water with the atomic force microscope.Science, 243(4898):1586–1589, Mar 1989.

    Article  Google Scholar 

  17. Y. F. Dufrêne. Surface morphology and mechanical properties of mdck monolayers by atomic force microscopy. J Cell Sci, 107 (Pt 5):1105–1114, May 2008.

    Article  Google Scholar 

  18. Y. F. Dufrêne, C. J. Boonaert, P. A. Gerin, M. Asther, and P. G. Rouxhet. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of phanerochaete chrysosporium. J Bacteriol, 181(17):5350–5354, Sep 1999.

    Google Scholar 

  19. O. Duroure, A. Buguin, H. Feracci, and P. Silberzan. Homophilic interactions between cadherin fragments at the single molecule level: an afm study. Langmuir, 22(10):4680–4684, May 2006.

    Article  Google Scholar 

  20. E. Evans and K. Ritchie Dynamic strength of molecular adhesion bonds. Biophys J 72(4), 1541–1555, 1997.

    Google Scholar 

  21. E. L. Florin, V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand-receptor pairs. Science, 264(5157):415–417, Apr 1994.

    Article  Google Scholar 

  22. Dimitrios Fotiadis, Simon Scheuring, Shirley A Müller, Andreas Engel, and Daniel J Müller. Imaging and manipulation of biological structures with the afm. Micron, 33(4):385–397, 2002.

    Article  Google Scholar 

  23. Clemens M Franz and Daniel J Müller. Analyzing focal adhesion structure by atomic force microscopy. J Cell Sci, 118(Pt 22):5315–5323, Nov 2005.

    Article  Google Scholar 

  24. Clemens M Franz, Anna Taubenberger, Pierre-Henri Puech, and Daniel J Muller. Studying integrin-mediated cell adhesion at the single-molecule level using afm force spectroscopy. Sci STKE, 2007(406):pl5, Oct 2007.

    Article  Google Scholar 

  25. Jens Friedrichs, Anna Taubenberger, Clemens M Franz, and Daniel J Muller. Cellular remodelling of individual collagen fibrils visualized by time-lapse afm. J Mol Biol, 372(3), 594–607 2007.

    Article  Google Scholar 

  26. Jens Friedrichs, Juha M Torkko, Jonne Helenius, Terhi P Teráváinen, Joachim Füllekrug, Daniel J Muller, Kai Simons, and Aki Manninen. Contributions of galectin-3 and −9 to epithelial cell adhesion analyzed by single cell force spectroscopy. J Biol Chem, 282(40):29375–29383, Oct 2007.

    Article  Google Scholar 

  27. M. Fritz, M. Radmacher, and H. E. Gaub. In vitro activation of human platelets triggered and probed by atomic force microscopy. Exp Cell Res, 205(1):187–190, Mar 1993.

    Article  Google Scholar 

  28. M. Fritz, M. Radmacher, and H. E. Gaub. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J, 66(5):1328–1334, May 1994.

    Google Scholar 

  29. G. Fuhr, E. Richter, H. Zimmermann, H. Hitzler, H. Niehus, and R. Hagedorn. Cell traces – footprints of individual cells during locomotion and adhesion. Biol. Chem. 379(8–9):1161–1173, 1998.

    Article  Google Scholar 

  30. Gonçalves, R., N. Buzhysnskyy, and S. Scheuring. Mini review on the structure and supramolecular assembly of vdac. J. Bioenerg. Biomembr. 40(3):133–138, 2008.

    Google Scholar 

  31. W. Häberle, JK Hörber, F Ohnesorge, DP Smith, and G Binnig. In situ investigations of single living cells infected by viruses. Ultramicroscopy, 42-44:1161, 1992.

    Article  Google Scholar 

  32. H. G. Hansma and J. H. Hoh. Biomolecular imaging with the atomic force microscope.Annu Rev Biophys Biomol Struct, 23:115–139, 1994.

    Article  Google Scholar 

  33. P. G. Haydon, R. Lartius, V. Parpura, and S. P. Marchese-Ragona. Membrane deformation of living glial cells using atomic force microscopy.J Microsc, 182(Pt 2):114–120, May 1996.

    Article  Google Scholar 

  34. Jonne Helenius, Carl-Philipp Heisenberg, Hermann E Gaub, and Daniel J Muller. Single-cell force spectroscopy. J Cell Sci, 121(Pt 11):1785–1791, Jun 2008.

    Article  Google Scholar 

  35. P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A, 93(8):3477–3481, Apr 1996.

    Article  Google Scholar 

  36. J. H. Hoh and C. A. Schoenenberger. Surface morphology and mechanical properties of mdck monolayers by atomic force microscopy. J Cell Sci, 107 (Pt 5):1105–1114, May 1994.

    Google Scholar 

  37. Marko Kaksonen and David G Drubin. Palm reading: Seeing the future of cell biology at higher resolution. Dev Cell, 11(4):438–439, Oct 2006.

    Article  Google Scholar 

  38. Masaru Kawakami, Katherine Byrne, David J Brockwell, Sheena E Radford, and D. Alastair Smith. Viscoelastic study of the mechanical unfolding of a protein by afm. Biophys J, 91(2):L16–L18, Jul 2006.

    Article  Google Scholar 

  39. Masaru Kawakami, Katherine Byrne, Bhavin Khatri, Tom C B McLeish, Sheena E Radford, and D. Alastair Smith. Viscoelastic properties of single polysaccharide molecules determined by analysis of thermally driven oscillations of an atomic force microscope cantilever. Langmuir, 20(21):9299–9303, Oct 2004.

    Article  Google Scholar 

  40. M. Krieg, Y. Arboleda-Estudillo, P-H. Puech, J. Káfer, F. Graner, D. J. Müller, and C-P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol, 10(4):429–436, Apr 2008.

    Article  Google Scholar 

  41. D. Leckband (2004) Force as a probe of membrane protein structure and function. Curr Opin Struct Biol 11(4), 433–439, 2001.

    Article  Google Scholar 

  42. Deborah Leckband. Nanomechanics of adhesion proteins. Curr Opin Struct Biol, 14(5):524–530, Oct 2004.

    Article  Google Scholar 

  43. C. Legrimellec, E. Lesniewska, M. C. Giocondi, E. Finot, V. Vié, and J. P. Goudonnet.Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J, 75(2):695–703, Aug 1995.

    Google Scholar 

  44. C. Legrimellec, E. Lesniewska, M. C. Giocondi, E. Finot, and J. P. Goudonnet. Simultaneous imaging of the surface and the submembraneous cytoskeleton in living cells by tapping mode atomic force microscopy. C R Acad Sci III, 320(8):637–643, Aug 1997.

    Google Scholar 

  45. C. Legrimellec, E. Lesniewska, M. C. Giocondi, E. Finot, V. Vié, and J. P. Goudonnet.Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J, 75(2):695–703, Aug 1998.

    Google Scholar 

  46. Eric Lesniewska, Pierre Emmanuel Milhiet, Marie-Cécile Giocondi, and Christian Legrimellec. Atomic force microscope imaging of cells and membranes.Methods Cell Biol, 68:51–65, 2002.

    Article  Google Scholar 

  47. Rustem I Litvinov, Gaston Vilaire, Henry Shuman, Joel S Bennett, and John W Weisel. Quantitative analysis of platelet alpha v beta 3 binding to osteopontin using laser tweezers. J Biol Chem 278(51):51285–51290, 2003.

    Article  Google Scholar 

  48. Bryan T Marshall, Mian Long, James W Piper, Tadayuki Yago, Rodger P McEver, and Cheng Zhu. Direct observation of catch bonds involving cell-adhesion molecules. Nature, 423(6936):190–193, May 2003.

    Article  Google Scholar 

  49. Bryan T Marshall, Krishna K Sarangapani, Jizhong Lou, Rodger P McEver, and Cheng Zhu. Force history dependence of receptor-ligand dissociation. Biophys J, 88(2):1458–1466, Feb 2005.

    Article  Google Scholar 

  50. Bryan T Marshall, Krishna K Sarangapani, Jianhua Wu, Michael B Lawrence, Rodger P McEver, and Cheng Zhu (2006). Measuring molecular elasticity by atomic force microscope cantilever fluctuations. Biophys J 90(2), 681–692.

    Article  Google Scholar 

  51. R. Matzke, K. Jacobson, and M. Radmacher. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol, 3(6):607–610, Jun 2001.

    Article  Google Scholar 

  52. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 397(6714):50–53, Jan 1999.

    Article  Google Scholar 

  53. Gerhard Meyer and Nabil M. Amer. Novel optical approach to atomic force microscopy. Novel optical approach to atomic force microscopy, 53:1045, 1988.

    Article  Google Scholar 

  54. D. J. Müller, D. Fotiadis, S. Scheuring, S. A. Müller, and A. Engel. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J, 76(2):1101–1111, Feb 1999.

    Google Scholar 

  55. Daniel J Müller, Galen M Hand, Andreas Engel, and Gina E Sosinsky. Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J, 21(14):3598–3607, Jul 2002.

    Article  Google Scholar 

  56. E. Nagao and J.A. Dvorak. An integrated approach to the study of living cells by atomic force microscopy. J Microsc, 191(Pt 1):8–19, Jul 1998.

    Article  Google Scholar 

  57. E. Nagao and J.A. Dvorak. Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells. Biophys J, 76(6):3289–3297, Jun 1999.

    Google Scholar 

  58. V. Parpura, P.G. Haydon, and E. Henderson Three-dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci 104(2), 427–432 1993.

    Google Scholar 

  59. LM Picco and L Bozec. Analyzing focal adhesion structure by atomic force microscopy. J Cell Sci, 118(Pt 22):5315–5323, Nov 2007.

    Article  Google Scholar 

  60. K. Poole and D. Müller. Flexible, actin-based ridges colocalise with the beta1 integrin on the surface of melanoma cells. Br J Cancer, 92(8):1499–1505, Apr 2005.

    Article  Google Scholar 

  61. Pierre-Henri Puech, Kate Poole, Detlef Knebel, and Daniel J Muller. A new technical approach to quantify cell-cell adhesion forces by afm.Ultramicroscopy, 106(8-9):637–644, 2006.

    Article  Google Scholar 

  62. Pierre-Henri Puech, Anna Taubenberger, Florian Ulrich, Michael Krieg, Daniel J Muller, and Carl-Philipp Heisenberg.Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci, 118(18), 4199–4206, 2005.

    Article  Google Scholar 

  63. C. A. Putman, K. O. van der Werf, B.G. de Grooth, N.F. van Hulst, and J.Greve. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J, 67(4):1749–1753, Oct 1994.

    Google Scholar 

  64. Manfred Radmacher. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol, 68:67–90, 2002.

    Article  Google Scholar 

  65. C. Rotsch, F. Braet, E. Wisse, and M. Radmacher. Afm imaging and elasticity measurements on living rat liver macrophages.Cell Biol Int, 21(11):685–696, Nov 1997.

    Article  Google Scholar 

  66. C. Rotsch and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J, 78(1):520–535, Jan 2000.

    Google Scholar 

  67. S. S. Schaus and E. R. Henderson. Cell viability and probe-cell membrane interactions of xr1 glial cells imaged by atomic force microscopy. Biophys J, 73(3):1205–1214, Sep 1997.

    Google Scholar 

  68. S. Scheuring, P. Ringler, M. Borgnia, H. Stahlberg, D.J. Müller, P. Agre, and A. Engel (1999) High resolution afm topographs of the escherichia coli water channel aquaporin z. EMBO J 18(18):4981–4987.

    Article  Google Scholar 

  69. Selhuber-Unkel, C., M. López-García, H. Kessler, and J. P. Spatz. Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys. J. 95(11):5424–5431, 2008.

    Google Scholar 

  70. Amita Sharma, Kurt I Anderson, and Daniel J Müller Actin microridges characterized by laser scanning confocal and atomic force microscopy. FEBS Lett 579(9), 2001–2008 2005.

    Article  Google Scholar 

  71. S. G. Shroff, D. R. Saner, and R. Lal. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am J Physiol, 269(1 Pt 1):C286–C292, Jul 1995.

    Google Scholar 

  72. A. Spudich and D. Braunstein. Large secretory structures at the cell surface imaged with scanning force microscopy. Proc Natl Acad Sci U S A, 92(15):6976–6980, Jul 1995.

    Article  Google Scholar 

  73. D. Stoffler, K. N. Goldie, B. Feja, and U. Aebi. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J Mol Biol, 287(4):741–752, Apr 1999.

    Article  Google Scholar 

  74. J Tamayo and R Garcia. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir, 12:4430–4435, 1996.

    Article  Google Scholar 

  75. Anna Taubenberger, David A Cisneros, Jens Friedrichs, Pierre-Henri Puech, Daniel J Muller, and Clemens M Franz. Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type i by using single-cell force spectroscopy. Mol Biol Cell, 18(5):1634–1644, May 2007.

    Article  Google Scholar 

  76. A. Trache and G. A. Meininger. Atomic force multi optical imaging integrated microscope for monitoring molecular dynamics in live cells. J. Biomed. Opt. 10(6):064023, 2005.

    Article  Google Scholar 

  77. Florian Ulrich, Michael Krieg, Eva-Maria Schötz, Vinzenz Link, Irinka Castanon, Viktor Schnabel, Anna Taubenberger, Daniel Mueller, Pierre-Henri Puech, and Carl-Philipp Heisenberg. Wnt11 functions in gastrulation by controlling cell cohesion through rab5c and e-cadherin. Dev Cell, 9(4):555–564, Oct 2005.

    Article  Google Scholar 

  78. A. L. Weisenhorn, B. Drake, C. B. Prater, S. A. Gould, P. K. Hansma, F. Ohnesorge, M. Egger, S. P. Heyn, and H. E. Gaub. Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys J, 58(5):1251–1258, Nov 1990.

    Google Scholar 

  79. Katrin I Willig, Robert R Kellner, Rebecca Medda, Birka Hein, Stefan Jakobs, and Stefan W Hell.Nanoscale resolution in gfp-based microscopy. Nat Methods, 3(9):721–723, Sep 2006.

    Article  Google Scholar 

  80. Ewa P Wojcikiewicz, Midhat H Abdulreda, Xiaohui Zhang, and Vincent T Moy. Force spectroscopy of lfa-1 and its ligands, icam-1 and icam-2. Biomacromolecules, 7(11):3188–3195, Nov 2006.

    Article  Google Scholar 

  81. H. W. Wu, T. Kuhn, and V. T. Moy. Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 20(5):389–397, Aug 1998.

    Google Scholar 

  82. Tadayuki Yago, Jizhong Lou, Tao Wu, Jun Yang, Jonathan J Miner, Leslie Coburn, Josó A López, Miguel A Cruz, Jing-Fei Dong, Larry V McIntire, Rodger P McEver, and Cheng Zhu. Platelet glycoprotein ibalpha forms catch bonds with human wt vwf but not with type 2b von willebrand disease vwf. J Clin Invest, 118(9):3195–3207, Sep 2008.

    Google Scholar 

  83. Xiaohui Zhang, Ewa Wojcikiewicz, and Vincent T Moy. Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys J, 83(4):2270–2279, Oct 2002.

    Article  Google Scholar 

  84. Cheng Zhu, Jizhong Lou, and Rodger P McEver. Catch bonds: physical models, structural bases, biological function and rheological relevance. Biorheology, 42(6):443–462, 2005.

    Google Scholar 

Download references

Acknowledgments

The authors want to thank Pr. D.J. Müller for his invaluable help and for introducing them to AFM. A. Taubenberger, M. Krieg, J. Friedrich, Dr. J. Helenius and Dr. K. Poole are thanked for their valuable input in the described experiments. JPK Instruments’s continuous support is greatly acknowledged. This work was supported by the DFG Research Center for Functional Nanostructures, Karlsruhe, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-H. Puech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, C.M., Puech, PH. Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cel. Mol. Bioeng. 1, 289–300 (2008). https://doi.org/10.1007/s12195-008-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0037-3

Keywords

Navigation