Skip to main content
Log in

Spin-dependent rectification in the C 59 N molecule

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Coherent spin-dependent electron transport is investigated in three conditions: (1) a C60 molecule is connected to two ferromagnetic (FM) electrodes symmetrically, (2) a C59N molecule is connected to two FM electrodes symmetrically and (3) a C59N molecule is connected to two FM electrodes asymmetrically. This work is based on a single-band tight-binding model Hamiltonian and the Green’s function approach with the Landauer–Buttiker formalism. Electrodes used in this study are semi-infinite FM electrodes with finite cross-section. Obvious rectification effect is observed in the C59N molecule which is connected to the FMelectrodes asymmetrically. This effect is more in the P alignment of FM electrodes than in AP alignment of FM electrodes. This study indicates that the rectification behaviour is due to the asymmetry in molecule and junctions. Also in this investigation tunnel magnetoresistance (TMR) is calculated for these molecules. Asymmetry is observed in TMR of C59N which is coupled to the electrodes asymmetrically due to asymmetric junctions, but TMR of C60 is symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S C Chang, Z Y Li, C N Lau, B Larade and R S Williams, Appl. Phys. Lett. 83, 3198 (2003)

    Article  ADS  Google Scholar 

  2. H Yu et al, Angew. Chem. 42, 5706 (2003)

    Article  Google Scholar 

  3. N J Geddes, J R Sambles, D J Jarvis, W G Parker and D J Sandman, Appl. Phys. Lett. 56, 1916 (1990)

    Article  ADS  Google Scholar 

  4. G Ho et al, Chem. Eur. J. 11, 2914 (2005)

    Article  Google Scholar 

  5. Y S Joe, S H Lee and E R Hedin, Phys. Lett. A374, 2367 (2010)

    ADS  Google Scholar 

  6. G Ho, J R Heath, M Kondratenko, D F Perepichka, K Arseneault, M Pezolet and M R Bryce, Chem. Eur. J. 11, 2914 (2005)

    Article  Google Scholar 

  7. I I Oleynik, M A Kozhushner, V S Posvyanskii and L Yu, Phys. Rev. Lett. 96, 096803 (2006)

    Article  ADS  Google Scholar 

  8. S Lakshmi and S K Pati, Phys. Rev. B72, 193410 (2005)

    ADS  Google Scholar 

  9. O D Miller, B Muralidharan, N Kapur and A W Ghosh, Phys. Rev. B77, 125427 (2008)

    ADS  Google Scholar 

  10. R Pati et al, Phys. Rev. B68, 100407(R) (2003)

    MathSciNet  ADS  Google Scholar 

  11. L Senapati, R Pati and S C Erwin, Phys. Rev. B76, 024438 (2007)

    ADS  Google Scholar 

  12. H Dalgleish and G Kirczenow, Phys. Rev. B72, 184407 (2005); Phys. Rev. B73, 235436 (2006)

  13. R Liu et al, Nano Lett. 5, 1959 (2005)

    Article  ADS  Google Scholar 

  14. A R Rocha et al, Nature Mater. 4, 335 (2005)

    Article  ADS  Google Scholar 

  15. D Waldron et al, Phys. Rev. Lett. 96, 166804 (2006)

    Article  ADS  Google Scholar 

  16. B Wang et al, Phys. Rev. B75, 235415 (2007)

    ADS  Google Scholar 

  17. H He et al, Phys. Rev. B73, 195311 (2006)

    ADS  Google Scholar 

  18. Z Ning, Y Zhu, J Wang and H Guo, Phys. Rev. Lett. 100, 056803 (2008)

    Article  ADS  Google Scholar 

  19. R Q Wang, Y Q Zhou, B Wang and D Y Xing, Phys. Rev. B75, 045318 (2007)

    ADS  Google Scholar 

  20. H Mehrez et al, Phys. Rev. Lett. 84, 2682 (2000)

    Article  ADS  Google Scholar 

  21. S Krompiewski et al, Phys. Rev. B69, 155423 (2004)

    ADS  Google Scholar 

  22. E G Emberly and G Kirczenow, Chem. Phys. 281, 311 (2002)

    Article  Google Scholar 

  23. H Dalgleish and G Kirczenow, Phys. Rev. B73, 235436 (2006)

    ADS  Google Scholar 

  24. H Şahin, R T Senger and S Ciraci, J. Appl. Phys. 108, 074301 (2010)

    Article  ADS  Google Scholar 

  25. D M T Kuo, S Y Shiau and Y C Chang, Phys. Rev. B84, 245303 (2011)

    ADS  Google Scholar 

  26. H He, R Pandey and S P Karna, Chem. Phys. Lett. 439, 110 (2007)

    Article  ADS  Google Scholar 

  27. W Rudziński, J Barnas and M Jankowska, J. Magn. Magn. Mater. 261, 319 (2003)

    Article  ADS  Google Scholar 

  28. Y C Tao and D Y Xing, J. Magn. Magn. Mater. 251, 163 (2002)

    Article  ADS  Google Scholar 

  29. J F Hu, V Ng, J P Wang and T C Chong, J. Magn. Magn. Mater. 268, 114 (2004)

    Article  ADS  Google Scholar 

  30. Z M Zeng, H X Wei, L X Jiang, G X Du, W S Zhan and X F Han, J. Magn. Magn. Mater. 303, e219 (2006)

    Article  ADS  Google Scholar 

  31. K Oguz and J M D Coey, J. Magn. Magn. Mater. 321, 1009 (2009)

    Article  ADS  Google Scholar 

  32. J F Feng, G Feng, Q L Ma, X F Han and J M D Coey, J. Magn. Magn. Mater. 322, 1446 (2010)

    Article  ADS  Google Scholar 

  33. S G Chigarev, E M Epshtein and P E Zilberman, J. Magn. Magn. Mater. 323, 130 (2011)

    Article  ADS  Google Scholar 

  34. Q L Ma, J F Feng, G Feng, K Oguz, X F Han and J M D Coey, J. Magn. Magn. Mater. 322, 108 (2010)

    Article  ADS  Google Scholar 

  35. P Stefanski, Phys. Rev. B79, 085312 (2009)

    ADS  Google Scholar 

  36. T Marukame, T Ishikawa, K Matsuda, T Uemura and M Yamamoto, J. Appl. Phys. 99, 08A904 (2006)

    Article  Google Scholar 

  37. K A Hoogdalem and D Loss, Phys. Rev. B84, 024402 (2011)

    ADS  Google Scholar 

  38. S Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  39. Z Zhang, Z Yang, J Yuan and M Qiu, J. Chem. Phys. 128, 044711 (2008)

    Article  ADS  Google Scholar 

  40. P Parida, S K Pati and A Painelli, Phys. Rev. B83, 165404 (2011)

    ADS  Google Scholar 

  41. A Saffarzadeh, J. Appl. Phys. 103, 083705 (2008)

    Article  ADS  Google Scholar 

  42. Y Asai and H Fukuyama, Phys. Rev. B72, 085431 (2005)

    ADS  Google Scholar 

  43. R H Xie, Phys. Lett. A258, 51 (1999)

    ADS  Google Scholar 

  44. B Muralidharan and S Datta, Phys. Rev. B76, 035432 (2007)

    ADS  Google Scholar 

  45. A Saraiva-Souza, B G Sumpter, V Meunier, A G Souza Filho and J Del Nero, J. Phys. Chem. C112, 12008 (2008)

    Google Scholar 

  46. J Taylor, M Brandbyge and K Stokbro, Phys. Rev. Lett. 89, 138301 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAHVASH ARABI DAREHDOR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DAREHDOR, M.A., SHAHTAHMASEBI, N. Spin-dependent rectification in the C 59 N molecule. Pramana - J Phys 80, 327–336 (2013). https://doi.org/10.1007/s12043-012-0505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0505-0

Keywords

PACS Nos

Navigation