Skip to main content
Log in

Electronic properties of organic monolayers and molecular devices

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We review some of our recent experimental results on charge transport in organic nanostructures such as self-assembled monolayer and monolayers of organic semiconductors. We describe a molecular rectifying junction made from a sequential self-assembly on silicon. These devices exhibit a marked current-voltage rectification behavior due to resonant transport between the Si conduction band and the π molecule highest occupied molecular orbital of the π molecule. We discuss the role of metal Fermi level pinning in the current-voltage behavior of these molecular junctions. We also discuss some recent insights on the inelastic electron tunneling behavior of Si/alkyl chain/metal junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITRS, International technology roadmap for semiconductors (2002)

  2. R Compano, L Molenkamp and D J Paul, Technology roadmap for nanoelectronics, European Commission, IST programme, Future and Emerging Technologies, Brussels (2000)

  3. A Ulman, An introduction to ultrathin organic films: From Langmuir-Blodgett to self-assembly (Academic Press, Boston, 1991)

    Google Scholar 

  4. G J Ashwell, J R Sambles, A S Martin, W G Parker and M Szablewski, J. Chem. Soc. Chem. Commun. 19, 1374 (1990)

    Article  Google Scholar 

  5. N J Geddes, J R Sambles and A S Martin, Adv. Mater. Opt. Electron. 5, 305 (1995)

    Article  Google Scholar 

  6. A S Martin, J R Sambles and G J Ashwell, Phys. Rev. Lett. 70, 218 (1993)

    Article  ADS  Google Scholar 

  7. R M Metzger, B Chen, U Höpfner, M V Lakshmikantham, D Vuillaume, T Kawai, X Wu, H Tachibana, T V Hughes, H Sakurai, J W Baldwin, C Hosch, M P Cava, L Brehmer and G J Ashwell, J. Am. Chem. Soc. 119, 10455 (1997)

    Article  Google Scholar 

  8. D Vuillaume, B Chen and R M Metzger, Langmuir 15, 4011 (1999)

    Article  Google Scholar 

  9. T Xu, I R Peterson, M V Lakshmikantham and R M Metzger, Angew. Chem. Int. Ed. Engl. 40, 1749 (2001)

    Article  Google Scholar 

  10. R M Metzger, T Xu and I R Peterson, J. Phys. Chem. B105, 7280 (2001)

    Google Scholar 

  11. C P Collier, E W Wong, M Belohradsky, F M Raymo, J F Stoddart, P J Kuekes, R S Williams and J R Heath, Science 285, 391 (1999)

    Article  Google Scholar 

  12. C P Collier, G Mattersteig, E W Wong, Y Luo, K Beverly, J Sampaio, F Raymo, J F Stoddart and J R Heath, Science 289, 1172 (2000)

    Article  ADS  Google Scholar 

  13. A R Pease, J O Jeppesen, J F Stoddart, Y Luo, C P Collier and J R Heath, Acc. Chem. Res. 34, 433 (2001)

    Article  Google Scholar 

  14. Y Chen, G-Y Jung, D A A Ohlberg, X Li, D R Stewart, J O Jeppesen, K A Nielsen, J F Stoddart and R S Williams, Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  15. Y Chen, D A A Ohlberg, X Li, D R Stewart, R S Williams, J O Jeppesen, K A Nielsen, J F Stoddart, D L Olynick and E Anderson, Appl. Phys. Lett. 82, 1610 (2003)

    Article  ADS  Google Scholar 

  16. C N Lau, D R Stewart, R S Williams and M Bockrath, Nano Lett. 4, 569 (2004)

    Article  ADS  Google Scholar 

  17. D R Stewart, D A A Ohlberg, P A Beck, Y Chen, R S Williams, J O Jeppesen, K A Nielsen and J F Stoddart, Nano Lett. 4, 133 (2004)

    Article  ADS  Google Scholar 

  18. L A Bumm, J J Arnold, M T Cygan, T D Dunbar, T P Burgin, L Jones II, D L Allara, J M Tour and P S Weiss, Science 271, 1705 (1996)

    Article  ADS  Google Scholar 

  19. L A Bumm, J J Arnold, T D Dunbar, D L Allara and P S Weiss, J. Phys. Chem. B103, 8122 (1999)

    Google Scholar 

  20. C Kergueris, J P Bourgoin and S Palacin, Nanotechnology 10, 8 (1999)

    Article  ADS  Google Scholar 

  21. M A Reed, C Zhou, C J Muller, T P Burgin and J M Tour, Science 278, 252 (1997)

    Article  Google Scholar 

  22. C Kergueris, J P Bourgoin, S Palacin, D Esteve, C Urbina, M Magoga and C Joachim, Phys. Rev. B59, 12505 (1999)

    ADS  Google Scholar 

  23. J Reichert, R Ochs, D Beckmann, H B Weber, M Mayor and H v Löhneysen, Phys. Rev. Lett. 88, 176804 (2002)

    Article  ADS  Google Scholar 

  24. H B Weber, J Reichert, F Weigend, R Ochs, D Beckmann, M Mayor, R Ahlrichs and H v Löhneysen, Chem. Phys. 281, 113 (2002)

    Article  Google Scholar 

  25. J Chen, M A Reed, A M Rawlett and J M Tour, Science 286, 1550 (1999)

    Article  Google Scholar 

  26. J Chen, W Wang, M A Reed, A M Rawlett, D W Price and J M Tour, Appl. Phys. Lett. 77, 1224 (2000)

    Article  ADS  Google Scholar 

  27. M A Reed, J Chen, A M Rawlett, D W Price and J M Tour, Appl. Phys. Lett. 78, 3735 (2001)

    Article  ADS  Google Scholar 

  28. Z J Donhauser, B A Mantooth, K F Kelly, L A Bumm, J D Monnell, J J Stapleton, D W Price, A M Rawlett, D L Allara, J M Tour and P S Weiss, Science 292, 2303 (2001)

    Article  Google Scholar 

  29. G K Ramachandran, T J Hopson, A M Rawlett, L A Nagahara, A Primak and S M Lindsay, Science 300, 1413 (2003)

    Article  ADS  Google Scholar 

  30. M Bruening, E Moons, D Yaron-Marcovitch, D Cahen, J Libman and A Shanzer, J. Am. Chem. Soc. 116, 2972 (1994)

    Article  Google Scholar 

  31. R Cohen, S Bastide, D Cahen, J Libman, A Shanzer and Y Rosenwaks, Opt. Mat. 9, 394 (1998)

    Article  Google Scholar 

  32. R Cohen, N Zenou, D Cahen and S Yitzchaik, Chem. Phys. Lett. 279, 270 (1997)

    Article  ADS  Google Scholar 

  33. C Joachim, J K Gimzewski and A Aviram, Nature (London) 408, 541 (2000)

    Article  ADS  Google Scholar 

  34. F Schreiber, Prog. Surf. Sci. 65, 151 (2000)

    Article  Google Scholar 

  35. W C Bigelow, D L Pickett and W A Zisman, J. Colloid Sci. 1, 513 (1946)

    Article  Google Scholar 

  36. R Maoz and J Sagiv, J. Colloid and Interface Sci. 100, 465 (1984)

    Article  Google Scholar 

  37. J B Brzoska, N Shahidzadeh and F Rondelez, Nature (London) 360, 719 (1992)

    Article  ADS  Google Scholar 

  38. J B Brzoska, I Ben Azouz and F Rondelez, Langmuir 10, 4367 (1994)

    Article  Google Scholar 

  39. D L Allara, A N Parikh and F Rondelez, Langmuir 11, 2357 (1995)

    Article  Google Scholar 

  40. A N Parikh, D L Allara, I Ben Azouz and F Rondelez, J. Phys. Chem. 98, 7577 (1994)

    Article  Google Scholar 

  41. C Boulas, J V Davidovits, F Rondelez and D Vuillaume, Phys. Rev. Lett. 76, 4797 (1996)

    Article  ADS  Google Scholar 

  42. D Vuillaume, C Boulas, J Collet, G Allan and C Delerue, Phys. Rev. B58, 16491 (1998)

    ADS  Google Scholar 

  43. B Mann and H Kuhn, J. Appl. Phys. 42, 4398 (1971)

    Article  ADS  Google Scholar 

  44. E E Polymeropoulos and J Sagiv, J. Chem. Phys. 69, 1836 (1978)

    Article  ADS  Google Scholar 

  45. J Collet, O Tharaud, A Chapoton and D Vuillaume, Appl. Phys. Lett. 76, 1941 (2000)

    Article  ADS  Google Scholar 

  46. J Collet and D Vuillaume, Appl. Phys. Lett. 73, 2681 (1998)

    Article  ADS  Google Scholar 

  47. K M Roth, J S Lindsey, D F Bocian and W G Kuhr, Langmuir 18, 4030 (2002)

    Article  Google Scholar 

  48. K M Roth, A A Yasseri, Z Liu, R B Dabke, V Malinovskii, K-H Schweikart, L Yu, H Tiznado, F Zaera, J S Lindsey, W G Kuhr and D F Bocian, J. Am. Chem. Soc. 125, 505 (2003)

    Article  Google Scholar 

  49. W G Kuhr, A R Gallo, R W Manning and C W Rhodine, Mat. Res. Soc. Bulletin 29, 838 (2004)

    Google Scholar 

  50. N P Guisinger, M E Greene, R Basu, A S Baluch and M C Hersam, Nano Lett. 4, 55 (2004)

    Article  ADS  Google Scholar 

  51. S Lenfant, C Krzeminski, C Delerue, G Allan and D Vuillaume, Nano Lett. 3, 741 (2003)

    Article  ADS  Google Scholar 

  52. C Petit, G Salace, S Lenfant and D Vuillaume, Microelectronic Engineering 80, 398 (2005)

    Article  Google Scholar 

  53. A Nitzan and M A Ratner, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  54. Y Xue, S Datta and M A Ratner, J. Chem. Phys. 115, 4292 (2001)

    Article  ADS  Google Scholar 

  55. J K Tomfohr and O F Sankey, Phys. Rev. B65, 245105 (2002)

    ADS  Google Scholar 

  56. S N Yaliraki, A E Roitberg, C Gonzalez, V Mujica and M A Ratner, J. Chem. Phys. 111, 6997 (1999)

    Article  ADS  Google Scholar 

  57. W Tian, S Datta, S Hong, R Reifenberger, J I Henderson and C P Kubiak, J. Chem. Phys. 109, 2874 (1998)

    Article  ADS  Google Scholar 

  58. A Kahn, N Koch and W Gao, J. Polymer Sci.: Part B: Polymer Phys. 41, 2529 (2003)

    Article  Google Scholar 

  59. H Ishii, K Sugiyama, E Ito and K Seki, Adv. Mat. 11, 605 (1999)

    Article  Google Scholar 

  60. H Haick, M Ambrico, T Ligonzo and D Cahen, Adv. Mat. 16, 2145 (2004)

    Article  Google Scholar 

  61. A Vilan, J Ghabboun and D Cahen, J. Phys. Chem. B107, 6360 (2003)

    Google Scholar 

  62. A Vilan, A Shanzer and D Cahen, Nature (London) 404, 166 (2000)

    Article  ADS  Google Scholar 

  63. D Vuillaume, J. Nanosci. Nanotech. 2, 267 (2002)

    Article  Google Scholar 

  64. S Lenfant, D Guerin, F Tran Van, C Chevrot, S Palacin, J-P Bourgoin, O Bouloussa, F Rondelez, C Delerue and D Vuillaume, J. Phys. Chem. B, doi 10.1021/jp053510u

  65. J G Simmons, J. Appl. Phys. 34, 2581 (1963)

    Article  MATH  ADS  Google Scholar 

  66. C Krzeminski, G Allan, C Delerue, D Vuillaume and R M Metzger, Phys. Rev. B64, 085405 (2001)

    ADS  Google Scholar 

  67. C Krzeminski, C Delerue and G Allan, J. Phys. Chem. B105, 6321 (2001)

    Google Scholar 

  68. O Gershewitz, M Grinstein, C N Sukenik, K Regev, J Ghabboun and D Cahen, J. Phys. Chem. B108, 664 (2004)

    Google Scholar 

  69. VT is defined as the intercept between a linear fit of the current at high negative voltages and the zero current y-axis

  70. I R Peterson, D Vuillaume and R M Metzger, J. Phys. Chem. A105, 4702 (2001)

    Google Scholar 

  71. L E Hall, J R Reimers, N S Hush and K Silverbrook, J. Chem. Phys. 112, 1510 (2000)

    Article  ADS  Google Scholar 

  72. W Schottky, Naturwissenschaften 26, 843 (1938)

    Article  ADS  Google Scholar 

  73. N F Mott, Proc. Cambr. Philos. Soc. 34, 568 (1938)

    Article  Google Scholar 

  74. J Bardeen, Phys. Rev. 71, 717 (1947)

    Article  ADS  Google Scholar 

  75. A M Cowley and S M Sze, J. Appl. Phys. 36, 3212 (1965)

    Article  ADS  Google Scholar 

  76. J Tersoff, Phys. Rev. Lett. 52, 465 (1984)

    Article  ADS  Google Scholar 

  77. V Heine, Phys. Rev. 138, 1689 (1965)

    Article  ADS  Google Scholar 

  78. H Vazquez, R Oszwaldowski, P Pou, J Ortega, R Perez, F Flores and A Kahn, Europhys. Lett. 65, 802 (2004)

    Article  ADS  Google Scholar 

  79. G L Fisher, A V Walker, A E Hooper, T B Tighe, K B Bahnck, H T Skriba, M D Reinard, B C Haynie, R L Opila, N Winograd and D L Allara, J. Am. Chem. Soc. 124, 5528 (2002)

    Article  Google Scholar 

  80. A V Walker, T B Tighe, O M Cabarcos, M D Reinard, B C Haynie, S Uppili, N Winograd and D L Allara, J. Am. Chem. Soc. 126, 3954 (2004)

    Article  Google Scholar 

  81. A V Walker, T B Tighe, M D Reinard, B C Haynie, D L Allara and N Winograd, Chem. Phys. Lett. 369, 615 (2003)

    Article  ADS  Google Scholar 

  82. G L Fisher, A E Hooper, R L Opila, D L Allara and N Winograd, J. Phys. Chem. B104, 3267 (2000)

    Google Scholar 

  83. D R Jung and A W Czanderna, Critical reviews in solid state and materials sciences 191, 1 (1994)

    Article  Google Scholar 

  84. H Ahn and J E Whitten, J. Phys. Chem. B107, 6565 (2003)

    Google Scholar 

  85. X Crispin, V Geskin, A Crispin, J Cornil, R Lazzaroni, W R Salaneck and J L Brédas, J. Am. Chem. Soc. 124, 8131 (2002)

    Article  Google Scholar 

  86. P Fontaine, D Goguenheim, D Deresmes, D Vuillaume, M Garet and F Rondelez, Appl. Phys. Lett. 62, 2256 (1993)

    Article  ADS  Google Scholar 

  87. M Halik, H Klauk, U Zschieschang, G Schmid, C Dehm, M Schütz, S Maisch, F Effenberger, M Brunnbauer and F Stellacci, Nature (London) 431, 963 (2004)

    Article  ADS  Google Scholar 

  88. J G Kushmerick, J Lazorcik, C H Patterson, R Shashidhar, D S Seferos and G Bazan, Nano Lett. 4, 643 (2004)

    Article  ADS  Google Scholar 

  89. W Wang, T Lee, I Krestchmar and M A Reed, Nano Lett. 4, 643 (2004)

    Article  ADS  Google Scholar 

  90. A Pecchia, A Di Carlo, A Gagliardi, S Sanna, T Frauenheim and R Guttierez, Nano Lett. 4, 2109 (2004)

    Article  ADS  Google Scholar 

  91. G Salace, C Petit and D Vuillaume, J. Appl. Phys. 91, 5896 (2002)

    Article  ADS  Google Scholar 

  92. C Petit and G Salace, Rev. Sci. Instrum. 74, 4462 (2003)

    Article  ADS  Google Scholar 

  93. J Lambe and R C Jacklevic, Phys. Rev. 165, 821 (1968)

    Article  ADS  Google Scholar 

  94. J Klein, A Leger, M Belin, D Dufourneau and M J L Sangster, Phys. Rev. B7, 2336 (1973)

    ADS  Google Scholar 

  95. C Petit, G Salace and D Vuillaume, J. Appl. Phys. 96, 5042 (2004)

    Article  ADS  Google Scholar 

  96. C Petit, G Salace and D Vuillaume, Solid-State Electron. 47, 1663 (2003)

    Article  ADS  Google Scholar 

  97. R C Jacklevic and J Lambe, Phys. Rev. Lett. 17, 1139 (1966)

    Article  ADS  Google Scholar 

  98. C Castiglioni, M Gussoni and G Zerbi, J. Chem. Phys. 95, 7144 (1991)

    Article  ADS  Google Scholar 

  99. J Kirtley and J T Hall, Phys. Rev. B22, 848 (1980)

    ADS  Google Scholar 

  100. M A Bryant and J E Pemterton, J. Am. Chem. Soc. 113, 8284 (1991)

    Article  Google Scholar 

  101. N M D Brown, R B Floyd and D G Walmsley, J. Chem. Soc. Faraday, Trans II 75, 261 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuillaume, D., Lenfant, S., Guerin, D. et al. Electronic properties of organic monolayers and molecular devices. Pramana - J Phys 67, 17–32 (2006). https://doi.org/10.1007/s12043-006-0033-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-006-0033-x

Keywords

PACS Nos

Navigation