Skip to main content

Advertisement

Log in

Modeling and synthesis of strong ground motion

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson N A and Youngs R R 1992 A stable algorithm for regression analysis using the random effects model; Bull. Seismol. Soc. Am. 82 505–510.

    Google Scholar 

  • Aki K 1968 Seismic displacement near a fault; J. Geophys. Res. 73 5359–5376.

    Article  Google Scholar 

  • Aki K and Richards P G 1980 Quantitative Seismology: Theory and Methods; Vol. I, WH Freeman, New York.

    Google Scholar 

  • Antolik M and Dreger D S 2003 Rupture process of the 26 January 2001 M w 7.6 Bhuj, India, earthquake from teleseismic broadband data; Bull. Seismol. Soc. Am. 93 1235–1248.

    Article  Google Scholar 

  • Archuleta R J, Liu P C, Steidl J H, Bonilla L F, Lavallee D and Heuze F E 2003 Finite-fault site-specific acceleration time histories that include nonlinear soil response; Phys. Earth Planet Interiors 137 153–181.

    Article  Google Scholar 

  • Atkinson G M and Boore D M 1995 Ground-motion relations for Eastern North America; Bull. Seismol. Soc. Am. 85(1) 17–30.

    Google Scholar 

  • Backus G and Mulcahy M 1976 Moment tensors and other phenomenological description of seismic sources I. Continuous displacements; Geophys. J. Roy. Astron. Soc. 46 341–361.

    Google Scholar 

  • Beresnev I and Atkinson G M 1997 Modeling finite fault radiation from the ωn spectrum; Bull. Seismol. Soc. Am. 87 67–84.

    Google Scholar 

  • Boore D M 1983 Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra; Bull. Seismol. Soc. Am. 73 1865–1894.

    Google Scholar 

  • Boore D M and Atkinson G M 1987 Stochastic prediction of ground motion in Eastern North America; Bull. Seismol. Soc. Am. 4 460–477.

    Google Scholar 

  • Bouchon M 1979a Discrete wave number representation of elastic wave fields in three-space dimensions; J. Geophys. Res. 84(7) 3609–3614.

    Article  Google Scholar 

  • Bouchon M 1979b Predictability of ground displacement and velocity near an earthquake fault: the Parkfield earthquake of 1966; J. Geophys. Res. 84(7) 6149–6156.

    Article  Google Scholar 

  • Bouchon M and Aki K 1977 Discrete wave number representation of seismic-source wave fields; Bull. Seismol. Soc. Am. 67 259–277.

    Google Scholar 

  • Brune J 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes; J. Geophys. Res. 75 4997–5009.

    Article  Google Scholar 

  • BSSC 2001 NEHRP recommended provisions for seismic regulations for new buildings and other structures 2000 edition, part 1: Provisions. Technical Report FEMA 368, Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, D.C., USA.

    Google Scholar 

  • Bullen K and Bolt B A 1985 An Introduction to the Theory of Seismology. Fourth edn. (Cambridge, U.K.: Cambridge University Press).

    Google Scholar 

  • Burridge R and Knopoff L 1964 Body force equivalents for seismic dislocation; Bull. Seismol. Soc. Am. 54 1875–1888.

    Google Scholar 

  • Campbell K W 1981 Near-source attenuation peak horizontal acceleration; Bull. Seismol. Soc. Am. 71(3) 2039–2070.

    Google Scholar 

  • Campbell K W 2003a Engineering models for strong ground motion; Earthquake Engineering Handbook (eds) Chen W F, Scawthorn C S and Arros J F, p. 759–803.

  • Campbell K W 2003b Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America; Bull. Seismol. Soc. Am. 93(3) 1012–1033.

    Article  Google Scholar 

  • Chi W C, Dreger D and Kaverina A 2001 Finite-source modeling of the 1999 taiwan (Chi-Chi) earthquake derived from a dense strong-motion network; Bull. Seismol. Soc. Am. 91(5) 1144–1157.

    Article  Google Scholar 

  • Chin R C Y, Hedstrom G and Thigpen L 1984 Numerical methods in seismology; J. Comput. Phys. 54 154–179.

    Google Scholar 

  • Cho I and Nakanishi I 2000 Investigation of the three-dimensional geometry ruptured by the 1995 Hyogo-Ken Nanbu earthquake using strong-motion and geodetic data; Bull. Seismol. Soc. Am. 90 450–467.

    Article  Google Scholar 

  • Chouet B 1987 Representation of an extended seismic source in a propagator-based formalism; Bull. Seismol. Soc. Am. 77 14–27.

    Google Scholar 

  • Cornell C A 1968 Engineering seismic risk analysis; Bull. Seismol. Soc. Am. 58 1583–1601.

    Google Scholar 

  • Cotton F and Campillo M 1995 Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake; J. Geophys. Res. 100(B3) 3961–3975.

    Article  Google Scholar 

  • Dan K, Watanabe T, Tanaka and Sato R 1990 Stability of earthquake ground motion synthesized by using different small-event records as empirical Green’s function; Bull. Seismol. Soc. Am. 80 1433–1455.

    Google Scholar 

  • Das S and Suhaldoc P 1996 On the inverse problem for earthquake rupture. The Haskell type source model; J. Geophys. Res. 101 5725–5738.

    Article  Google Scholar 

  • Deodatis G, Shinozuka M and Papageorgiou A 1990 Stochastic wave representation of seismic ground motion. I: F-K spectra; J. Engineering Mechanics, ASCE 116 2363–2379.

    Article  Google Scholar 

  • Deodatis G and Theoharis A P 1994 Seismic ground motion in a layered half-space due to a Haskell-type source. I: Applications; Soil Dynamics and Earthquake Engineering 13(4) 293–301.

    Article  Google Scholar 

  • Douglas J 2003 Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates; Earth Sci. Rev. 89 43–104.

    Article  Google Scholar 

  • Dunkin JW 1965 Computation of modal solutions in layered elastic media at high frequencies; Bull. Seismol. Soc. Am. 84 335–358.

    Google Scholar 

  • Frankel A 1995 Simulating strong motion of large earthquakes using recordings of small earthquakes: the Loma Prieta mainshock as test case; Bull. Seismol. Soc. Am. 85 1144–1160.

    Google Scholar 

  • Gilbert F 1970 Excitation of the normal modes of the earth by earthquake sources; Geophys. J. Roy. Astron. Soc. 22 223–226.

    Google Scholar 

  • Gilbert F and Backus G E 1966 Propagator matrices in elastic wave and vibration problems; Geophysics 31 326–332.

    Article  Google Scholar 

  • Graves RW and Wald D J 2001 Resolution analysis of finite fault source inversions using one- and three-dimensional Green’s functions I. Strong motions; J. Geophys. Res. 106(7) 8745–8766.

    Article  Google Scholar 

  • GSI 2000 Seismotectonic atlas of India and its environs; Geological Survey of India.

  • Hanks T C and McGuire R K 1981 The character of high-frequency strong ground motion; Bull. Seismol. Soc. Am. 71 2071–2095.

    Google Scholar 

  • Hartzell S, Harmsen S, Frankel A and Larsen A 1999 Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake; Bull. Seismol. Soc. Am. 89 1484–1506.

    Google Scholar 

  • Hartzell S and Heaton T 1983 Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake; Bull. Seismol. Soc. Am. 73 1553–1583.

    Google Scholar 

  • Hartzell S and Liu P 1995 Determination of earthquake source parameters using a hybrid global search algorithm; Bull. Seismol. Soc. Am. 85 516–524.

    Google Scholar 

  • Hartzell S H 1978 Earthquake aftershocks as Green’s functions; Geophys. Res. Lett. 5 1–4.

    Article  Google Scholar 

  • Hartzell S H, Frazier S A and Brune J N 1978 Earthquake modeling in a homogeneous half-space; Bull. Seismol. Soc. Am. 68 301–316.

    Google Scholar 

  • Haskell N A 1964 Total energy and energy spectral density of elastic wave radiation from propagating faults; Bull. Seismol. Soc. Am. 54(2) 1811–1841.

    Google Scholar 

  • Haskell N A 1969 Elastic displacement in the near-field of a propagating fault; Bull. Seismol. Soc. Am. 59(2) 865–908.

    Google Scholar 

  • Housner G W 1947 Characteristics of strong motion earthquakes; Bull. Seismol. Soc. Am. 37(1) 19–31.

    Google Scholar 

  • Housner G W 1955 Properties of strong ground motion earthquakes; Bull. Seismol. Soc. Am. 45(3) 197–218.

    Google Scholar 

  • Hutchings L 1994 Kinematic earthquake models and synthesized ground motion using empirical Green’s functions; Bull. Seismol. Soc. Am. 84 1028–1050.

    Google Scholar 

  • Hwang H and Huo J R 1997 Attenuation relations of ground motion for rock and soil sites in Eastern United States; Soil Dynamics and Earthquake Engineering 16 363–372.

    Article  Google Scholar 

  • IS-1893 (Part I) 2002 Indian standard criteria for earthquake resistant design of structures, fifth revision, part-1. In: Bureau of Indian Standards, New Delhi.

  • Iyengar R N and Agrawal S K 2001 Earthquake source model using strong motion displacement as response of finite elastic media; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 110 9–23.

    Google Scholar 

  • Iyengar R N and Iyengar K T S 1969 A non-stationary random process model for earth quake accelerogram; Bull. Seismol. Soc. Am. 59 1163–1188.

    Google Scholar 

  • Iyengar R N and Raghu Kanth S T G 2004 Attenuation of strong ground motion in Peninsular India; Seism. Res. Lett. 79 530–540.

    Article  Google Scholar 

  • Iyengar R N and Raghu Kanth S T G 2006 Strong ground motion estimation during the Kutch, India earthquake; Pure Appl. Geophys. 163 153–173.

    Article  Google Scholar 

  • Jain S K, Roshan R D, Arlekar J N and Basu P C 2000 Empirical attenuation relationships for the Himalayan earthquakes based on Indian strong-motion data; In: Proceedingsof the 6th International Conference on Seismic Zonation, 12–15 November, Palm Spring, CA, USA.

  • Jarpe S P and Kasameyer P W 1996 Validation of a procedure for calculating broad band strong-motion time histories with empirical Green’s functions; Bull. Seismol. Soc. Am. 86 1116–1129.

    Google Scholar 

  • Joyner W B and Boore D M 1981 Peak horizontal acceleration and velocity from strong motion records including records from the 1979, Imperial Valley, California earthquake; Bull. Seismol. Soc. Am. 71 2011–2038.

    Google Scholar 

  • Kanai K 1957 Semi-empirical formula for seismic characterstics of the ground; Bulletin of the Earthquake Research Institute, Japan 35 308–325.

    Google Scholar 

  • Kanamori H and Anderson D L 1975 Theoretical basis of some empirical relations in seismology; Bull. Seismol. Soc. Am. 65 1073–1095.

    Google Scholar 

  • Kennett B L N 1974 Reflections, rays and reverberations; Bull. Seismol. Soc. Am. 64 1685–1691.

    Google Scholar 

  • Kennett B L N and Kerry N J 1979 Seismic waves in a stratified half-space; Geophys. J. Roy. Astr. Soc. 57 557–583.

    Google Scholar 

  • Khattri K N, Yu G, Anderson J G, Brune J N and Zeng Y 1994 Seismic hazard estimation using modeling of earthquake strong ground motions: A brief analysis of 1991 Uttarkashi earthquake, Himalaya and prognostication for a great earthquake in the region; Curr. Sci. 67 343–353.

    Google Scholar 

  • Komatitsch D, Liu Q, Tromp J, Suss P, Stidham C and Shaw J 2004 Simulations of ground motion in the Los Angeles basin based upon the spectral-element method; Bull. Seismol. Soc. Am. 94 187–206.

    Article  Google Scholar 

  • Luco J E and Apsel R J 1983 On the Green’s functions for a layered half-space. I; Bull. Seismol. Soc. Am. 73 909–929.

    Google Scholar 

  • Ma K F, Mori J, Lee S J and Yu S B 2001 Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake; Bull. Seismol. Soc. Am. 91(5) 1069–1087.

    Article  Google Scholar 

  • Mai P M and Beroza G C 2002 A spatial random field model to characterize complexity in earthquake slip; J. Geophys. Res. 107 doi:10.1029/2001JB000588.

    Google Scholar 

  • Mandal P and Rastogi B K 1998 Frequency-dependent relation of Coda Qc for Koyna-Warna region, India; Pure Appl. Geophys. 153 163–177.

    Article  Google Scholar 

  • Mandal P, Rastogi B K, Satyanarayana H V K, Kousalya M, Vijayraghavan R, Satyamurthy C, Raju I P, Sarma A N S and Kumar N 2004 Characterization of the causative fault system for the 2001 Bhuj aftershocks; Bull. Seismol. Soc. Am. 72 1969–2001.

    Google Scholar 

  • Maruyama T 1963 On the force equivalents of dynamic elastic dislocations with reference to the earthquake mechanism; Bulletin of Earthquake Research Institute, University of Tokyo 41 467–486.

    Google Scholar 

  • Olson A H and Apsel R J 1982 Finite faults and inverse theory with applications to the 1979 Imperial Valley, earthquake; Bull. Seismol. Soc. Am. 72 1969–2001.

    Google Scholar 

  • Raghu Kanth S T G 2008 Source mechanism model for ground motion simulation; Applied Mathematical Modeling, doi:10.1016/j.apm.2007.06.001

  • Raghu Kanth S T G and Iyengar R N 2007 Estimation of seismic spectral acceleration in Peninsular India; J. Earth Syst. Sci. 116 199–214.

    Article  Google Scholar 

  • Raghu Kanth S T G and Iyengar R N 2008 Strong motion compatible source geometry; J. Geophys. Res.-Solid Earth 113 B04309, doi:10.1029/2006JB004278.

    Google Scholar 

  • Reid H F 1911 The elastic-rebound theory of earthquake; University of California Publications in the Geological Sciences 6 13–44.

    Google Scholar 

  • Saragoni G R and Hart G C 1974 Simulation of artificial earthquakes; Earthquake Engineering and Structural Dynamics 2 249–267.

    Article  Google Scholar 

  • Sharma M L 1998 Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong motion arrays in India; Bull. Seismol. Soc. Am. 88 1063–1069.

    Google Scholar 

  • Shinozuka M and Sato Y 1967 Simulation of non-stationary random process; J. Engineering Mechanics, ASCE 93(1) 11–40

    Google Scholar 

  • Singh S K, Mohanty W K, Bansal B K and Roonwal G S 2002 Ground motion in Delhi from future large/great earthquakes in central seismic gap of the Himalayan arc; Bull. Seismol. Soc. Am. 92 555–569.

    Article  Google Scholar 

  • Singh S K, Garcia D, Pacheco J F, Valenzuela R, Bansal B K and Dattatrayam R S 2004 Q of the Indian shield; Bull. Seismol. Soc. Am. 94 1564–1570.

    Article  Google Scholar 

  • Somerville P, Sen M and Cohee B 1991 Simulation of strong ground motion recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile earthquakes; Bull. Seismol. Soc. Am. 81 1–27.

    Google Scholar 

  • SSHAC 1997 Recommendations for PSHA: Guidance on Uncertainty and Use of Experts, U.S. Nuclear Regulatory Commission, NUREG/CR-6372 Washington, D.C.

    Google Scholar 

  • Tajimi H 1960 A statistical method for determining the maximum response of a building structure during an earthquake; Proceedings of the Second World Conference on Earthquake Engineering, Tokyo 2 781–797.

    Google Scholar 

  • Takeo M 1987 An inversion method to analyze the rupture processes of earthquakes using near-field seismograms; Bull. Seismol. Soc. Am. 77 490–513.

    Google Scholar 

  • Tarantola A and Valette B 1982 Generalized nonlinear inverse problems solved using the least squares criterion; Reviews of Geophysics and Space Physics 20(2) 219–232.

    Article  Google Scholar 

  • Theoharis A P and Deodatis G 1994 Seismic ground motion in a layered half-space due to a Haskell-type source. I: Theory; Soil Dynamics and Earthquake Engineering 13(4) 281–292.

    Article  Google Scholar 

  • Toro G, Abrahamson N and Schneider J 1997 Attenuation relations of ground motion for rock and soil sites in Eastern United States; Seism. Res. Lett. 68 41–57.

    Google Scholar 

  • Trifunac M D 1974 A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971; Bull. Seismol. Soc. Am. 64 149–172.

    Google Scholar 

  • Vvedenskaya A V 1956 The determination of displacement fields by means of dislocation theory; Akad. Nank. USSR, Izv. Ser. Geofiz. 3 227.

    Google Scholar 

  • Zeng Y, Anderson J G and Yu G 1993 A composite source model for computing realistic synthetic strong motions; Geophys. Res. Lett. 21 725–728.

    Article  Google Scholar 

  • Zhang R and Shinozuka M 1996 Effects of irregular boundaries in layered half-space on seismic waves; J. Sound and Vibration 195 1–16.

    Article  Google Scholar 

  • Zhang R, Yong Y and Lin Y K 1991 Earthquake ground motion modeling. I: Deterministic point source; J. Engg. Mech., ASCE 117 2114–2132.

    Article  Google Scholar 

  • Zhang R, Zhang L and Shinozuka M 1997 Seismic waves in a laterally inhomogeneous layered medium. I: Theory; J. App. Mech., ASME 64 50–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. G. Raghu Kanth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghu Kanth, S.T.G. Modeling and synthesis of strong ground motion. J Earth Syst Sci 117 (Suppl 2), 683–705 (2008). https://doi.org/10.1007/s12040-008-0064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-008-0064-4

Keywords

Navigation