Skip to main content
Log in

Imaging modalities in the assessment of osteoporosis

  • Original Articles
  • Published:
Comprehensive Therapy

Abstract

Imaging can be helpful in the diagnosis and treatment of osteoporosis. Several imaging modalities have become available to assess bone mass in the peripheral, axial, or entire skeleton. The basic principles, indications, and limitations of each imaging method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin S, Cummings S. Results of bone densitometry affect women's decisions about taking measures to prevent fractures. Ann Intern Med. 1992;116:990–995.

    PubMed  CAS  Google Scholar 

  2. Mazess R. Advances in bone densitometry. Ital J Mineral Electrolyte Metab. 1997;11:73–79.

    Google Scholar 

  3. Genant H, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: State of the art. J Bone Miner Res. 1996;11:707–730.

    PubMed  CAS  Google Scholar 

  4. Finsen V, Anda S. Accuracy of visually estimated bone mineralization in routine radiographs of the lower extremity. Skeletal Radiol. 1988;17:270–275.

    Article  PubMed  CAS  Google Scholar 

  5. Haller J, Andre M, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part I: Investigation in cadavers. Invest Radiol. 1990;25:517–522.

    Article  PubMed  CAS  Google Scholar 

  6. Haller J, Andre M, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part II: Clinical investigation with computed tomography. Invest Radiol. 1990;25:523–532.

    Article  PubMed  CAS  Google Scholar 

  7. Steinbach H. The roentgen appearance of osteoporosis. Radiol Clin North Am. 1964;2:191–207.

    PubMed  CAS  Google Scholar 

  8. Mayo-Smith W, Rosenthal D. Radiographic appearance of osteopenia. Radiol Clin North Am. 1991;29:37–47.

    PubMed  CAS  Google Scholar 

  9. Theodorou DJ, Theodorou SJ, Duncan T, Garfin S, Wong W. Percutaneous balloon kyphoplasty for the correction of spinal deformity in painful vertebral body compression fractures. Clin Imaging. 2002;26:1–5.

    Article  PubMed  Google Scholar 

  10. Theodorou DJ, Wong W, Duncan T, Garfin S, Theodorou SJ, Stoll T. Percutaneous balloon kyphoplasty: preliminary experience with a novel procedure for correcting spinal deformity in vertebral compression fractures [Abstract]. Radiology. 2000;217(P):680.

    Google Scholar 

  11. Theodorou DJ, Wong W, Duncan T, Garfin S, Theodorou SJ, Stoll T. Percutaneous balloon kyphoplasty: Initial experience with the application of a novel procedure for the correction of spinal deformity associated with vertebral compression fractures [Abstract]. Am Acad Orthop Surg (AAOS) 68th Annual Meeting, February 28–March 4, 2001, San Francisco, California, USA. Proceedings, p. 465.

  12. Theodorou DJ, Theodorou SJ, Wong W, Duncan T, Garfin S, Stoll T. Introducing balloon kyphoplasty: a new treatment option for painful vertebral body compression fractures [Abstract]. Lorenzini G. Foundation 4th International Symposium on Women's Health and Menopause, May 19–23, 2001, Washington, D.C., USA. p. 53.

  13. Theodorou DJ, Wong W, Duncan T, Garfin S, Theodorou SJ, Stoll T. Percutaneous balloon kyphoplasty: A novel technique for reducing pain and spinal deformity associated with osteoporotic vertebral compression fractures [Abstract]. Radiology. 2000;217:S511.

    Google Scholar 

  14. Theodorou DJ, Theodorou SJ, Wong W, Duncan T, Garfin S, Stoll T. Kyphoplasty may provide an efficient means for the reduction and fixation of painful osteoporotic vertebral compression fractures [Abstract]. Bone. 2000;27:748.

    Google Scholar 

  15. Theodorou DJ, Wong W, Duncan T, Garfin S, Theodorou SJ. Percutaneous balloon kyphoplasty: A novel technique for reducing pain and kyphosis associated with osteoporotic vertebral compression fractures [Abstract]. Am Soc Spine Radiol (ASSR) 4th Annual Symposium, February, 19–23, 2001, Marco Island, Florida, USA, p. 267.

  16. Singh M, Nagrath A, Maini P. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970;52:457–467.

    PubMed  CAS  Google Scholar 

  17. Nordin B, Barnet E, MacGregor J, Nisbet J. Lumbar spine densitometry. BMJ. 1962;1:1793–1796.

    PubMed  CAS  Google Scholar 

  18. Meunier P, Vignon G, Pansu D, et al. L'apport de la radiologie dans l'appreciation d'une demineralization rachidienne. Cah Med Lyon. 1972;35:4115–4122.

    Google Scholar 

  19. Jensen K, Tougaard L. A simple x-ray method for monitoring progress of osteoporosis. Lancet. 1981;2:19–20.

    Article  PubMed  CAS  Google Scholar 

  20. Kruse H, Kuhlencordt F. Studies in primary osteoporosis. In: Dixon A, Russell R, Stam T, eds. Osteoporosis: A Multidisciplinary Problem. London: Academic Press; 1983: 149–152.

    Google Scholar 

  21. Genant H, Wu C, Van Kuijk C, Nevitt M. Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res. 1993;8:1137–1148.

    PubMed  CAS  Google Scholar 

  22. Hansson T, Roos B. Microcalluses of the trabeculae in lumbar vertebrae and their relation to the bone mineral content. Spine. 1981;6:375–380.

    Article  PubMed  CAS  Google Scholar 

  23. Cosman F, Herrington B, Himmelstein S, et al. Radiographic absorptiometry: A simple method for determination of bone mass. Osteoporos Int. 1991;2:34–38.

    Article  PubMed  CAS  Google Scholar 

  24. Kleerekoper M, Nelson D, Flynn M, et al. Comparison of radiographic absorptiometry with dual-energy x-ray absorptiometry and quantitative computed tomography in normal older white and black women. J Bone Miner Res. 1994;9: 1745–1749.

    PubMed  CAS  Google Scholar 

  25. Yang S-O, Hagiwara S, Engelke K, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: Precision and accuracy study. Radiology. 1994;192: 857–859.

    PubMed  CAS  Google Scholar 

  26. Yates A, Ross P, Lydick E, et al. Radiographic absorptiometry in the diagnosis of osteoporosis. Am J Med. 1995;98: 41S-47S.

    Article  PubMed  CAS  Google Scholar 

  27. Borg J, Mullgaard A, Riis B. Single x-ray absorptiometry: Performance characteristics and comparison with single photon absorptiometry. Osteoporos Int. 1995;5:377–381.

    Article  PubMed  CAS  Google Scholar 

  28. Theodorou DJ, Theodorou SJ. Dual-energy x-ray absorptiometry in clinical practice: Application and interpretation of scans beyond the numbers. Clin Imaging. 2002;26:43–49.

    Article  PubMed  Google Scholar 

  29. Theodorou DJ, Theodorou SJ, Sartoris D, Deftos L, Resnick D. Dual-energy x-ray absorptiometry (DXA) scan interpretation: looking beyond the numbers [Abstract]. World Congr Osteopor 2000, June 15–18, 2000, Navy Pier, Chicago, Illinois, USA. Osteoporos Intern. 2000;11:S145-S146.

    Google Scholar 

  30. Theodorou DJ, Theodorou SJ, Sartoris D, Resnick D. Dual-energy absorptiometry (DXA) scan interpretation: looking beyond the numbers [Abstract]. Radiology. 2000;217(P):684.

    Google Scholar 

  31. Genant H, Fuerst T, Faulkner K, Gluer C. In evaluating bone density for osteoporosis, are any of the availabe methods clearly superior? AJR Am J Roentgenol. 1996;167:1589–1590.

    PubMed  CAS  Google Scholar 

  32. Lang P, Schmitz S, Steiger P, Genant H. Lateral dual x-ray absorptiometry of the spine. Comparison with anteroposterior dual x-ray absorptiometry and quantitative CT [Abstract]. Radiology. 1990;177:128.

    Google Scholar 

  33. Theodorou DJ, Theodorou SJ, Sartoris DJ. Dual-energy x-ray absorptiometry in diagnosis of osteoporosis: Basic principles, indications, and scan interpretation. Comp Ther. 2002; 28:190–200.

    Google Scholar 

  34. Theodorou DJ, Theodorou SJ, Kwong E, et al. Regional bone mineral density among male and female competitors in the Ironman triathlon world championship [Abstract]. Bone. 2000;27:737.

    Google Scholar 

  35. Theodorou DJ, Theodorou SJ, Sartoris DJ. The evaluation of osteoporosis in orthopaedic practice: a review of current and innovative diagnostic modalities. Am J Orthop. (In Press)

  36. Theodorou DJ, Theodorou SJ, Sartoris D, Kwong E, Rocha G, Bracker M. Bone mineral density: Intense physical training may equalize gender-related differences [Abstract]. Radiology. 2000;217:S411.

    Google Scholar 

  37. Theodorou DJ, Theodorou SJ, Kwong E, et al. Assessment of bone mineral density in the lumbar spine of senior world class female endurance athletes [Abstract]. Int Soc Clin Densitom (ISCD) 6th Annual Scientific Meeting, May 8–13, 2000, Rio De Janeiro, Brazil. Abstracts, p. 238.

  38. Theodorou DJ, Theodorou SJ, Kwong E, et al. Does bone mineral density in the proximal femur correlate with world-class triathlon performance? [Abstract]. AJR Am J Roentgenol. 2001;176:S58-S59.

    Google Scholar 

  39. Theodorou DJ, Theodorou SJ, Kwong E, et al. Age-specific evaluation of bone mineral density and degenerative disease in the spine of high endurance female athletes [Abstract]. Bone. 2000;27:751.

    Google Scholar 

  40. Theodorou DJ, Theodorou SJ, Sartoris D, et al. Effects of intense physical training on bone mineral density: Gender-related differences laid to rest [Abstract]. J Bone Miner Res. 2000;15:S559.

    Google Scholar 

  41. Theodorou DJ, Theodorou SJ, Sartoris D. Osteoporosis: Prevention and diagnostic work-up. Hosp Med. 2002;63:396–400.

    PubMed  Google Scholar 

  42. Theodorou DJ, Theodorou SJ, Kwong E, et al. Bone mass and fracture risk in the lumbar spine of women world-triathlon championship participants: Results from the KONA study [Abstract]. Bone. 2000;27:751.

    Google Scholar 

  43. Theodorou DJ, Theodorou SJ, Kwong E, et al. Evaluation of bone mass and osteoporosis susceptibility in the lumbar spine of elite female triathletes [Abstract]. Osteoporos Int. 2000;11:S108-S109.

    Google Scholar 

  44. Theodorou DJ, Theodorou SJ, Kwong E, et al. What are the effects of intense physical exercise on spinal bone mineral density among postmenopausal athletic women? [Abstract]. AJR Am J Roentgenol. 2001;176:S72.

    Google Scholar 

  45. Theodorou DJ, Theodorou SJ, Kwong E, et al. Prevalence of low bone mass in the spine among older high performance women athletes [Abstract]. Bone. 2000;27:751.

    Google Scholar 

  46. Theodorou DJ, Theodorou SJ, Kwong E, et al. World-class triathlon performance: Correlation with bone mineral density in the proximal femur in 98 elite male athletes [Abstract]. AJR Am J Roentgenol. 2001; 176:S142-S143.

    Google Scholar 

  47. Cann C, Genant H. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tonogr. 1980;4:493–500.

    Article  CAS  Google Scholar 

  48. Genant H, Steiger P, Block J, et al. Quantitative computed tomography: update 1987. Calcif Tissue Int. 1987;41:179–186.

    Article  PubMed  CAS  Google Scholar 

  49. Steiger P, Block J, Steiger S, et al. Spinal bone mineral density measured with quantitative CT: Effect of region of interest, vertebral level, and technique. Radiology. 1990;175:537–543.

    PubMed  CAS  Google Scholar 

  50. Jergas M, Genant H. Current methods and recent advances in the diagnosis of osteoporosis. Arthritis Rheum. 1993;36:1649–1662.

    Article  PubMed  CAS  Google Scholar 

  51. Liu C, Theodorou DJ, Theodorou SJ, et al. Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury. Osteoporos Int. 2000;11:889–896.

    Article  PubMed  CAS  Google Scholar 

  52. Liu C, Theodorou DJ, Andre M, et al. Quantitative computed tomography of vertebral bone density changes following spinal cord injury [Abstract]. Radiology. 1998;209(P):420.

    Google Scholar 

  53. Genant H, Cann C, Ettinger B, et al. Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med. 1982;97:699–705.

    PubMed  CAS  Google Scholar 

  54. Liu C, Theodorou DJ, Theodorou SJ, et al. Spinal osteoporosis occurring in patients with spinal cord injury: Evaluation with quantitative computed tomography and dual-energy absorptiometry [Abstract]. AJR Am J Roentgenol. 2000;174: 111–112.

    Google Scholar 

  55. Wahner H, Dunn W, Mazess R, et al. Dual photon Gd-153 absorptiometry of bone. Radiology. 1985;156:203–206.

    PubMed  CAS  Google Scholar 

  56. Ito M, Ohki M, Hayashi K, et al. Trabecular texture analysis on CT images in the relationship with spinal fracture. Radiology. 1995;194:55–59.

    PubMed  CAS  Google Scholar 

  57. Theodorou DJ, Theodorou SJ, Andre M, Kubota D, Weigert J, Sartoris D. Quantitative computed tomography of spine: Comparison of three-dimensional and two-dimensional imaging approaches in clinical practice. J Clin Densitom. 2001;4:57–62.

    Article  PubMed  CAS  Google Scholar 

  58. Theodorou DJ, Theodorou SJ, Kubota D, Andre M, Weigert J, Sartoris D. Quantitative computed tomography in the evaluation of vertebral bone mineral density: Comparison between 2-dimensional and 3-dimensional imaging approaches [Abstract]. Osteoporos Int. 2000;11(Suppl 2):S85.

    Google Scholar 

  59. Lang P, Steiger P, Faulkner K, et al. Osteoporosis: Current techniques and recent developments in quantitative bone densitometry. Radiol Clin North Am. 1991;29:49–76.

    PubMed  CAS  Google Scholar 

  60. Guglielmi G. Quantitative computed tomography (QCT) and dual x-ray absorptiometry (DXA) in the diagnosis of osteoporosis. Eur J Radiol. 1995;20:185–187.

    Article  PubMed  CAS  Google Scholar 

  61. Kalender W, Suess C. A new calibration phantom for quantitative computed tomography. Med. Phys. 1987;14:863–866.

    Article  PubMed  CAS  Google Scholar 

  62. Arnold B. Solid phantom for QCT bone mineral analysis. In: Proceedings of the 7th International Workshop on Bone Densitometry, Palm Springs, CA, 1989.

  63. Suzuki S, Yamamuro T, Okumura H, Yamamoto I. Quantitative computed tomography: comparative study using different scanners with two calibration phantoms. Br J Radiol. 1991;64:1001–1006.

    Article  PubMed  CAS  Google Scholar 

  64. Mazess R. Errors in measuring trabecular bone by computed tomography due to marrow and bone composition. Calcif Tissue Int. 1983;35:148–152.

    Article  PubMed  CAS  Google Scholar 

  65. Kuiper J, Van Kuijk C, Grashuis J, et al. Accuracy and the influence of marrow fat on quantitative CT and dual-energy x-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int. 1996;6:25–30.

    Article  PubMed  CAS  Google Scholar 

  66. Gluer C, Engelke K, Lang T, et al. Quantitative computed tomography (QCT) of the lumbar spine and appendicular skeleton. Eur J Radiol. 1995;20:173–178.

    Article  PubMed  CAS  Google Scholar 

  67. Laval-Jeantet A, Roger B, Bouysse S, et al. Influence of vertebral fat content on quantitative CT density. Radiology. 1986;159;463–466.

    PubMed  CAS  Google Scholar 

  68. Reinbold W, Adler C, Kalender W, Lente R. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol. 1991;20:25–29.

    Article  PubMed  CAS  Google Scholar 

  69. Kalender W, Klotz E, Suess C. Vertebral bone mineral analysis: An integrated approach with CT. Radiology. 1987;164:419–423.

    PubMed  CAS  Google Scholar 

  70. Breatnach E, Robinson P. Repositioning errors in measurements of vertebral attenuation values by computed tomography. Br J Radiol. 1983;56:299–305.

    PubMed  CAS  Google Scholar 

  71. Kalender W, Brestowsky H, Felsenberg D. Bone mineral measurement: Automated determination of midvertebral CT section. Radiology. 1988;168:219–221.

    PubMed  CAS  Google Scholar 

  72. Health and Public Policy Committee, American College of Physicians. Radiologic methods to, evaluate bone mineral content. Ann Intern Med. 1984;100:908–911.

    Google Scholar 

  73. Schneider R, Math K. Bone density analysis, an update. Curr Opin Orthop. 1994;5:66–72.

    Google Scholar 

  74. Grampp S, Lang P, Jergas M, et al. Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: Short-term precision in vivo and comparison to dual x-ray absorptiometry. J Bone Miner Res. 1995;10:1566–1576.

    PubMed  CAS  Google Scholar 

  75. Grampp S, Jergas M, Lang P, et al. Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. Am J Roentgenol. 1996;167:133–140.

    CAS  Google Scholar 

  76. Cann C. Rational approach to radiation exposure in bone densitometry [Abstract]. Radiology. 1987;165(P):184S.

    Google Scholar 

  77. Kalender W, Effective dose values in bone mineral measurements by photon absorptiometry and computer tomography. Osteoporos Int. 1992;2:82–87.

    Article  PubMed  CAS  Google Scholar 

  78. Ruesgsegger P, Elsasser U, Anliker M, et al. Quantification of bone mineralization using computed tomography. Radiology. 1976;121:93–97.

    Google Scholar 

  79. Hangartner T, Overton T. Quantitative assessment of bone density using gamma-ray computed tomography. J. Comput Assist Tomogr. 1982;6:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  80. Muller A, Ruegsegger E, Ruegsegger P. Peripheral QCT: A low risk procedure to identify women predisposed to osteoporosis. Phys Med Biol. 1989;34:741–749.

    Article  PubMed  CAS  Google Scholar 

  81. Ruegsegger P, Durand E, Dambacher M. Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporos Int. 1991;1:76–80.

    Article  PubMed  CAS  Google Scholar 

  82. Grampp S, Majumdar S, Jergas M, et al. Distal radius: in vivo assessment with quantitative MR imaging, peripheral quantitative CT, and dual x-ray absorptiometry. Radiology. 1996;198:213–218.

    PubMed  CAS  Google Scholar 

  83. Muller A, Hildebrand T, Huselmann H, Ruegsegger P. In vivo reproducibility of three-dimensional strucural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res. 1996;11:1745–1750.

    PubMed  CAS  Google Scholar 

  84. Jones C, Laval-Jeantet A, Laval-Jeantet M, Genant H. Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone. 1987;8:201–206.

    Article  PubMed  CAS  Google Scholar 

  85. Lambiase R, Sartoris D, Fellingham L, et al. Vertebral mineral status: assessment with single versus multisection CT. Radiology. 1987;164:231–236.

    PubMed  CAS  Google Scholar 

  86. Banks L, Stevenson J. Modified method of spinal computed tomography for trabecular bone mineral measurements. J Comput Assist Tomogr. 1986;10:463–467.

    Article  PubMed  CAS  Google Scholar 

  87. Cameron J, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science. 1963;142:230–232.

    Article  PubMed  CAS  Google Scholar 

  88. Awbrey B, Jacobson P, Grubb S, et al. Bone density in women: A modified procedure for measurement of distal radial density. J Orthop Res. 1984;2:314–321.

    Article  PubMed  CAS  Google Scholar 

  89. Nilas L, Borg J, Gotfredsen A, et al. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss. J Nucl Med. 1985;26:1257–1262.

    PubMed  CAS  Google Scholar 

  90. Wahner H, Eastell R, Riggs B. Bone mineral density of the radius: Where do we stand? J Nucl Med. 1985;26:1339–1341.

    PubMed  CAS  Google Scholar 

  91. Cummings S, Black D, Nevitt M, et al. Appendicular bone density and age predict hip fracture in women. JAMA. 1990;263:665–668.

    Article  PubMed  CAS  Google Scholar 

  92. Wasnich R, Ross P, Heilbrun L, Vogel J. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol. 1985;153:745–751.

    PubMed  CAS  Google Scholar 

  93. Davis M. Screening for postmenopausal osteoporosis. Am J Obstet Gynecol. 1987;156:1–5.

    PubMed  CAS  Google Scholar 

  94. Ross P, Wasnich R, Heilbrun L, Vogel J. Definition of a spine fracture threshold based upon prospective fracture risk. Bone. 1987;8:271–278.

    Article  PubMed  CAS  Google Scholar 

  95. Wasnich R, Ross P, Heilbrun L, Vogel J. Selection of the optimal site for fracture risk prediction Clin Orthop. 1987;216:262–269.

    PubMed  Google Scholar 

  96. Vogel J, Wasnich R, Ross P. The clinical relevance of calcaneus bone mineral measurements: A review. Bone Miner. 1988;5:35–58.

    Article  PubMed  CAS  Google Scholar 

  97. Black D, Cummings S, Melton L. Appendicular bone mineral and a woman's lifetime risk of hip fracture. J Bone Miner Res. 1992;7:639–646.

    PubMed  CAS  Google Scholar 

  98. Eastell R, Wahner H, O'Fallon W, et al. Unequal decrease in bone density of lumbar spine and ultradistal radius in Colles' and vertebral fracture syndromes. J Clin Invest. 1989; 83:168–174.

    Article  PubMed  CAS  Google Scholar 

  99. Leboff M, Fuleiham E, Angell J, et al. Dual energy x-ray absorptiometry of the forearm: Reproducibility and correlation with single-photon absorptiometry. J Bone Miner Res. 1992;7:841–846.

    PubMed  CAS  Google Scholar 

  100. Johnston C, Slemenda C. Identification of patients with low bone mass by single-photon absorptiometry and single-energy x-ray absorptiometry. Am J Med. 1995;98:37S-40S.

    Article  PubMed  Google Scholar 

  101. Ross P, Wasnich R, Vogel J. Precision error in dual photon absorptiometry related to source age. Radiology. 1988;166;523–527.

    PubMed  CAS  Google Scholar 

  102. Sartoris D, Resnick D. Dual-energy radiographic absorptiometry for bone densitometry: Current status and perspective. Am J Roentgenol. 1989;152:241–246.

    CAS  Google Scholar 

  103. Schaadt O, Bohr H. Bone mineral by dual photon absorptiometry. Accuracy-precision sies of measurements. In: Dequeker J, Johnston C, eds. Non-invasive Bone Measurements. Oxford: IRL Press; 1982:59–72.

    Google Scholar 

  104. Gallagher J, Goldgar D, Moy A. Total bone calcium in normal women: effect of age and menopause status. J Bone Miner Res. 1987;2:491–495.

    PubMed  CAS  Google Scholar 

  105. Nuti R, Righi G, Martini G, et al. Methods and clinical applications of total body absorptiometry. J Nucl Med Allied Sci. 1987;31:213–221.

    PubMed  CAS  Google Scholar 

  106. Mazess R, Hanson J, Sorenson J, Barden H. Accuracy and precision of dual-photon absorptiometry. In: Dequeker J, ed. Proceedings of the 2nd International Workshop on Noninvasive Bone Measurement. Belgium: Leuven University Press, 1988.

    Google Scholar 

  107. Nijs J, Geusens P, Dequeker J, Verstraeten A. Reproducibility and intercorrelations of total bone mineral and dissected regional BMC measurements. In: Dequeker J, Geusens P, Wahner H, eds Bone Mineral Measurements by Photon Absorptiometry. Belgium: Leuven University Press, 1988.

    Google Scholar 

  108. Slemenda C, Johnston C. Bone mass measurement: Which site to measure? Am J Med. 1988;84:643–645.

    Article  PubMed  CAS  Google Scholar 

  109. Ross P, Wasnich R, Vogel J. Detection of prefracture spinal osteoporosis using bone mineral absorptiometry. J Bone Miner Res. 1988;3:1–11.

    PubMed  CAS  Google Scholar 

  110. Lang S. Elastic coefficients of animal bone. Science. 1969;165:287–288.

    Article  PubMed  CAS  Google Scholar 

  111. Abendschein W, Hyatt G. Ultrasonics and selected physical properties of bone. Clin Orthop. 1970;69:249–301.

    Google Scholar 

  112. Langton C, Palmer S, Porter R. The measurement of broadband ultrasound attenuation in cancellous bone. Engl Med. 1984;13:89–91.

    CAS  Google Scholar 

  113. Hans D, Dargent-Molina P, Schott A, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996;348:511–514.

    Article  PubMed  CAS  Google Scholar 

  114. Pfeifer M, Pollaehne W, Minne H. Ultrasound analyses of the calcaneous predict relative risk of the presence of at least one vertebral fracture and reflect different physical qualities of bone in different regions of the skeleton. Horm Metab Res. 1997;29:76–79.

    Article  PubMed  CAS  Google Scholar 

  115. Cepollaro C, Gonnelli S, Pondrelli C, et al. The combined use of ultrasound and densitometry in the prediction of vertebral fracture. Br J Radiol. 1997;70:691–696.

    PubMed  CAS  Google Scholar 

  116. Gonnelli S, Cepollaro C, Agnusdei D, et al. Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporos Int. 1995;5:413–418.

    Article  PubMed  CAS  Google Scholar 

  117. Benitez C, Theodorou DJ, Theodorou SJ, Schneider D, Barrett-Connor E, Sartoris D. Phalangeal ultrasound for osteoporosis screening in postmenopausal women [Abstract]. Radiology. 1999;213(P):111.

    Google Scholar 

  118. Tavakoli M, Evans J. The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics. 1992;30:389–395.

    Article  PubMed  CAS  Google Scholar 

  119. Kaufman J, Einhorn T. Perspectives. Ultrasound assessment of bone. J Bone Miner Res. 1993;8:517–525.

    PubMed  CAS  Google Scholar 

  120. Gluer C, Wu C, Genant H. Broadband ultrasound attenuation signals depend on trabecular orientation: An in vitro study. Osteoporos Int. 1993;3:185–191.

    Article  PubMed  CAS  Google Scholar 

  121. Resch H, Pietchmann P, Bernecker P, et al. Broadband ultrasound attenuation: A new diagnostic method in osteoporosis. Am J Roentgenol. 1990;155:825–828.

    CAS  Google Scholar 

  122. Bauer D, Gluer C, Genant H, Stone K. Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res. 1995;10:353–358.

    Article  PubMed  CAS  Google Scholar 

  123. Funke M, Kopka L, Vosshenrich R, et al. Broadband ultrasound attenuation in the diagnosis of osteoporosis: Correlation with osteodensitometry and fracture. Radiology. 1995; 194:77–81.

    PubMed  CAS  Google Scholar 

  124. Gluer C, Cummings S, Bauer D, et al. Osteoporosis: Association of recent fractures with quantitative US findings. Radiology. 1996;199:725–732.

    PubMed  CAS  Google Scholar 

  125. Gluer C. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res. 1997;12:1280–1288.

    Article  PubMed  CAS  Google Scholar 

  126. Brandenburger G, Kwon S, McDougall S, et al. Preliminary results from a longitudinal clinical study of ultrasound velocity. In: 3rd International Symposium on Osteoporosis. Copenhagen, 1991.

  127. McKelvie M, Fordham J, Clifford C, Palmer S. In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone. 1989;10:101–104.

    Article  PubMed  CAS  Google Scholar 

  128. Mazess R, Trempe J, Genske T, Wiener S. Ultrasound measurement of the os calcis. In: Ring E, ed. Current Research in Osteoporosis and Bone Mineral Lateral Dual X-Ray Absorptiometry of the Spine. Measurement. II: 1992, Bath, British Institute of Radiology, London, 1992.

    Google Scholar 

  129. Evans W, Jones E, Owen G. Factors affecting the in vivo precision of broadband ultrasonic attenuation. Phys Med Biol. 1995;40:137–151.

    Article  PubMed  CAS  Google Scholar 

  130. Quinn S, McCarthy J. Prospective evaluation of patients with suspected hip fracture and indeterminate radiographs: use of T1-weighted MR images. Radiology. 1993;187:469–471.

    PubMed  CAS  Google Scholar 

  131. Majumdar S, Genant H, Grampp S, et al. Analysis of trabecular bone structure in the distal radius using high resolution MRI. Eur Radiol. 1994;4:517–524.

    Article  Google Scholar 

  132. Hipp J, Jasujwicz A, Simmons C, et al. Trabecular bone morphology using micro-magnetic resonance imaging. J. Bone Miner Res. 1996;11:286–292.

    PubMed  CAS  Google Scholar 

  133. Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with x-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996;6:376–385.

    Article  PubMed  CAS  Google Scholar 

  134. Wehrli F, Ford J, Attie M, et al. Trabecular structure: preliminary application of MR interferometry. Radiology. 1991; 179:615–621.

    PubMed  CAS  Google Scholar 

  135. Jara H, Wehrli F, Chung H, et al. High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med. 1993;29:528–539.

    Article  PubMed  CAS  Google Scholar 

  136. Dooms G, Fisher M, Hricak H, et al. Bone marrow imaging: Magnetic resonance studies related to age and sex. Radiology. 1985;155:429–432.

    PubMed  CAS  Google Scholar 

  137. Majumdar S, Thomasson D, Shimakawa A, et al. Quantitation of the susceptibility difference between trabecular bone and bone marrow: Experimental studies. Magn Reson Med. 1991;22:111–127.

    Article  PubMed  CAS  Google Scholar 

  138. Majumdar S, Genant H. In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J Magn Reson Imaging. 1992;2:209–219.

    Article  PubMed  CAS  Google Scholar 

  139. Grampp S, Majumdar S, Jergas M, et al. In vivo precision of bone marrow MR relaxation time [Abstract]. European Congress of Radiology (ECR 93). 1993:p.108.

  140. Wehrli F, Ford J, Haddad J. Osteoporosis: clinical assessment with quantitative MRI in diagnosis. Radiology. 1995; 196:631–641.

    PubMed  CAS  Google Scholar 

  141. Majumdar S, Genant H, Grampp S, et al. Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: In vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1996;12:1–9.

    Google Scholar 

  142. Lin J, Ouyang X, Newitt D, et al. MRI, ultrasound, and bone mineral density in osteoporosis assessment and fracture discrimination [Abstract]. Radiology. 1997;205(P):239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors have stated that they do not have a significant financial interest or other relationship with any product manufacturer or provider of sevvices discussed in this article.

About this article

Cite this article

Theodorou, D.J., Theodorou, S.J. & Sartoris, D.J. Imaging modalities in the assessment of osteoporosis. Compr Ther 28, 189–199 (2002). https://doi.org/10.1007/s12019-002-0017-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12019-002-0017-9

Keywords

Navigation