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Abstract Atopic dermatitis (AD) is a highly pruritic,
chronic, and relapsing inflammatory skin disease. Recent
interest in AD has been sparked by reports of its increasing
prevalence and its contribution to increasing health care
costs. A precise understanding of immunologic mecha-
nisms is crucial for the development of effective treatment
strategies for AD. Various studies reveal that AD has a
multifactorial cause with the activation of complex immu-
nologic and inflammatory pathways. This review will
discuss cellular-mediated immunological pathomechanisms
of AD. Emphasis will be given to the role played by T cells,
antigen-presenting cells, eosinophils, and keratinocytes. We
also examine the immunological effect of superantigens on
various inflammatory cells including T regulatory cells.
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Abbreviations
AD atopic dermatitis
APC antigen-presenting cell
LC Langerhans’ cell
GM-
CSF

granulocyte–macrophage colony-stimulating
factor

CLA cutaneous lymphocyte-associated antigen
SAg superantigen
DC dendritic cell

FcɛRI high-affinity receptor for IgE
FcɛRII low-affinity receptor for IgE
IDEC inflammatory dendritic epidermal cell
MCP monocyte chemoattractant protein
TARC thymus and activation-regulated chemokine
pDC plasmacytoid dendritic cell
MBP major basic protein
EPD eosinophil peroxidase
ECP eosinophil cationic protein
EDN eosinophil-derived neurotoxin
LT leukotriene
PAF platelet-activating factor
MCP monocyte chemotactic protein
TNF tumor necrosis factor
Treg
cell

T regulatory cell

Atopic dermatitis (AD) is a highly pruritic, chronic, and
relapsing inflammatory skin disease characterized by
typically distributed eczematous skin lesions with lichen-
ification, excoriations, severe dry skin, and susceptibility to
cutaneous infections [1, 2]. AD commonly presents during
early infancy and childhood, but it might persist into or start
in adulthood [3]. Recent interest in AD has been sparked by
reports of its increasing prevalence and the significant
adverse effects of AD on patient’s quality of life [4, 5]. In
this review, we will discuss cellular-mediated immunolog-
ical mechanisms of AD.

Immune Mechanisms

Compared to normal healthy controls, clinically unaffected
skin in AD is not normal. It exhibits mild epidermal
hyperplasia and a sparse perivascular T cell infiltrate [6].
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Compared with normal nonatopic skin, AD unaffected skin
demonstrate an increased number of Th2 cells expressing
IL-4 and IL-13, but not IFN-γ, mRNA. Acute eczematous
skin lesions are characterized by spongiosis of the
epidermis and large numbers of antigen-presenting cells
(APCs) binding IgE molecules on their surface [7]. There is
a marked infiltration of activated memory T cells bearing
CD3, CD4, and CD45RO [8]. Acute AD patients have
significantly greater numbers of IL-4, IL-5, and IL-13
mRNA-expressing cells, but do not contain significant
numbers of IFN-α or IL-12 mRNA expressing cells [6].

In chronic skin, lesions have strong lichenification with a
hyperplastic epidermis and elongation of rete ridges. There
is an increased number of IgE-bearing Langerhans’ cells
(LCs) in the epidermis, and macrophages dominate the
dermal mononuclear cell infiltration [8]. Chronic AD skin
lesions have significant fewer IL-4 and IL-13 mRNA
expressing cell, but increased number of cells expressing
IL-5, granulocyte–macrophage colony-stimulating factor
(GM-CSF), IL-12, and IFN-α mRNA compared to acute
AD. Recent studies suggest that IL-11 might involve the
collagen deposition during chronic AD [9].

T cells

T lymphocytes play a prominent role in AD [10, 11].
Clinical studies have shown that T lymphocytes are most
important cells in the pathogenesis of AD [12]. AD
patients have increased levels of activated circulating T
cells and increased levels of L-selectin and the secretory
IL-2R, which are lymphocyte activation markers and
which correlate with the disease severity [13–15]. The
activation of T cells within the skin, and the subsequent
release of cytokines and other effector molecules, results
in clinically apparent T cell-mediated skin disease.
Activated skin-homing T cells expressing the selective
skin-homing receptor, cutaneous lymphocyte-associated
antigen (CLA), induce IgE mainly via IL-13 and prolong
eosinophil lifespan mainly via IL-5 [16, 17].

House dust mite allergen patch test can induce AD
skin lesions with two phases: an initial phase with
predominantly IL-4 producing Th2 cells and a subse-
quent phase after 24 to 48 h characterized by INF-γ
producing Th1 cells [1]. The important role that Th1 and
Th2 cytokines play in the skin inflammatory response has
been demonstrated in experimental animal studies. IL-4
transgenic mice develop inflammatory pruritic skin lesions
similar to AD, suggesting that Th2 cytokines play a
critical role in AD [18]. In IL-5 knockout mice, the
allergen-sensitized skin has been found to have no
eosinophils and exhibits decreased thickening; skin from
IL-4 knockout mice display normal thickening of the skin

layers, but has a reduction in eosinophils. The skin of INF-γ
knockout mice is characterized by reduced dermal thick-
ening [19].

CLA defines the subset of skin-homing T cells that
binds to E-selectin, and adhesion molecule expressed by
endothelial cells in inflamed tissues during the first step
of leukocyte extravasation [20, 21]. More than 80% of
skin-infiltrating T lymphocyte express CLA molecule
[22]. Superantigens (SAgs) can induce T cell expression
of CLA antigen via stimulation of IL-12 production [23].
Intracellular cytokine staining revealed that CLA T cells
contain high amounts of IL-13 and IL-5 but only small
amount of IL-4 or INF-γ [16]. AD skin microenviroment
components (IL-2, IL-4, IL-15, fibronectin, and collagen
IV) can prolong the survival of T cells infiltrating the
dermis and epidermis, and cause more-pronounced tissue
damage and induce chronic eczema [24].

Activated T cell have been found to induce keratino-
cyte apoptosis, leading to the spongiotic process found in
AD [25, 26]. This process is mediated by T cell-derived
INF-γ which upregulates Fas (CD95) on keratinocyte. The
lethal hit is delivered to keratinocytes by Fas-ligand
expressed by skin-infiltrating T cells and soluble Fas-
ligand released from T cells. Furthermore, keratinocytes
undergoing apoptosis release INF-γ-induced chemokines
(IP-10, Mig, and ITAC), which induces a second step of
chemotoxis of CXCR3 bearing T cells toward the
epidermis and might augment the skin inflammation and
keratinocyte apoptosis [27].

Antigen-Presenting Cells

The immune response to foreign proteins is dependent
on the efficiency and selectivity of antigen uptake by
APCs. APCs play a key role in driving the inflamma-
tory reaction in AD lesions [28]. APCs, like monocyte,
LCs, and dendritic cells (DCs), express 3 different IgE-
binding structures on their cell surface: the high-affinity
receptor for IgE (FcɛRI), the low-affinity receptor for IgE
(FcɛRII, CD23), and the IgE-binding lectin galectin-3
[29–31]. The expression of FcɛRI and FcɛRII on
monocytes in the peripheral blood is increase in AD
subjects. Compared to uninvolved skin, the lesional skin
of AD patients contains an increased number of IgE-
bearing LCs and inflammatory dendritic epidermal cells
(IDEC), which express FcɛRI [32]. But LCs at nonle-
sional sites still bear higher receptor numbers than
nondiseased skin. Both cell types play a central role in
the uptake and presentation of antigen to Th1 and Th2
cells [33]. The clinical importance of IgE-bearing LCs is
supported by the observation that the presence of FcɛRI-
and IgE-bearing LCs is required to provoke eczematous
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reaction after application of aeroallergens on the skin of
patients with atopic disease [34].

Neither FcɛRI+ IDEC nor FcɛRI+ LC can be found in
healthy skin [32], FcɛRI expression on LC and IDEC may
result from high serum IgE levels [35] and FcɛRI
expression on DC in the skin might mirror a systemic
immunological response to atopic disease [36]. Recent
studies demonstrated that IL-10 expression by APCs and
T cells is critical for Th2 cell development in a murine
model of AD [37]. In humans, FcɛRI on APCs also play a
pivotal role in modulating the differentiation. Crosslinking
of FcɛRI on APCs might induce the production of IL-10
and prevent their differentiation in DCs [38]. The high
expression of FcɛRI on LCs and IDECs in AD patients
could be detected with a high sensitivity and specificity
from other inflammatory skin diseases, and FcɛRI/FcɛRII
ratio is used to distinguish between extrinsic and intrinsic
AD [39, 40].

FcɛRI activation of LCs leads to the release of chemo-
kines, such as monocyte chemoattractant protein (MCP)1,
IL-16, thymus- and activation-regulated chemokine
(TARC), and macrophage-derived chemokine, which might
recruit the other proinflammatory cells into the skin. It has
been shown that LCs activated by FcɛRI drive native T
cells into IL-4 producing TH2 cells [41]. In addition,
FcɛRI-activated IDECs, like DCs, prime native T cells into
INF-γ producing Th1 cells and release IL-12 and IL-18
[33]. After successful topical treatment of AD lesions, the
number of IDECs in the epidermis decreases [35].

Plasmacytoid dendritic cells (pDCs), a second popula-
tion of DC, can produce type-I interferons and play a
central role in viral defense. In contrast to other inflamma-
tory skin diseases, AD lesional sites contain very few pDC
[42]. Furthermore, pDC of AD patients expressed high
levels of FcɛRI- and FcɛRI-preactivated pDC produce
less type-I interferons after stimulation with CpG motifs
[43]. This might explain why the high susceptibility of AD
patients to viral infections.

Eosinophil

Under physiological conditions, eosinophils are almost
exclusively limited to the digestive tract [44, 45] and are
not present in most other tissues. Blood eosinophilia is
present in most patients of AD [46]. However, tissue
eosinophilia has been shown to be a feature in AD and it
also correlates with disease severity [47]. In a murine
model of AD, tissue eosinophilia correlated with an
increase in the thickness of the epidermal and dermal
layers [19]. The level of circulating eosinophils correlates
with disease activity and responses to therapy for AD [48].

The eosinophil contains several cationic granule pro-
teins including major basic protein (MBP), eosinophil
peroxidase (EPD), eosinophil cationic protein (ECP), and
eosinophil-derived neurotoxin (EDN) [49]. They all
increase microvascular permeability [50] and induce
wheal-and-flare reaction in human skin [51]. The level of
ECP in serum has been frequently used as the marker for
monitoring AD activity [52, 53]. Besides ECP, serum
EDN, MBP, and urine eosinophil protein X levels are also
the markers for monitoring AD activity [54–56]. MBP and
ECP were studied as markers of eosinophil degranulation
of skin biopsy from AD. These eosinophil granule
proteins are not only present inside eosinophil but also
in the extracellular space [57]. The dominant MBP
staining was localized in the upper dermis from AD
lesions. In contrast, the specimen from unaffected skin
showed only minimal extracellular MBP staining in the
upper dermis. These findings demonstrated that eosinophil
activity in AD is through deposition of granule products.

Activated eosinophils not only release granule proteins
but also generate lipid mediators such as leukotriene (LT)
C4 and platelet-activating factor (PAF). Both PAF and
LTC4 increase vascular permeability [58, 59]. PAF can
attract and activate leukocytes to areas of inflammation,
and LTC4 stimulates smooth muscle contraction. IL-5
enhances eosinophilopoiesis and eosinophil release from
the bone marrow [60]. IL-5 also enhances chemotaxis of
eosinophils [61]. Besides IL-5, IL-3 and GM-CSF have
also been shown to stimulate eosinophil production in the
bone marrow [62]. IL-4 receptor has been identified on
eosinophils and IL-4 can prime eosinophils to certain
chemotatic stimuli [63]. In contrast, TGF-β1 inhibits
eosinophil survival in a dose-dependent manner and can
induce apoptosis of eosinophils [64]. IL-5 also might
increase eotaxin-mediated chemotaxis. Eosinophils also
play an important role in the switch of a Th2 cytokine
pattern in acute lesions of AD toward a more Th1-like
pattern in chronic AD [17, 20]. On the other hand, Th2
cytokines (IL-4, IL-13, IL-9) can promote eosinophilia by
regulating local IL-5 and eotaxin synthesis and by
suppressing INF-γ production [65].

Several members of the C–C chemokine are important
chemotactic factors for eosinophils including eotaxin and
RANTES [66–68]. Both eotaxin and RANTES are
produced by dermal fibroblasts [69]. Both keratinocytes
and fibroblasts from AD increase the production of
RANTES [67, 70]. Eotaxin and monocyte chemotactic
protein (MCP)-3 are important in the early recruitment of
eosinophils [71, 72]. RANTES, MCP-5, and MIP-1α
involve at later time points eosinophil recruitment [73].
Beside C–C chemokines, some CXC chemokines also can
induce eosinophil chemotaxis like CXCL9, CXCL10, and
CXCL12 [74]. CCR-3 is the principle receptor for
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eosinophil attraction [75] and the major ligand for CCR-3
include eotaxin, RANTES, MCP-2, MCP-3, and MCP-4
in human [76].

Keratinocyte

Keratinocytes are the most abundant cell type of the
epidermis. Epidermal keratinocyte actively participate in
the pathogenesis of AD by producing a number of
cytokines and chemokines [77, 78]. GM-CSF is readily
produced by keratinocytes in response to autocrine IL-1α,
tumor necrosis factor-α (TNF-α), and to the T cell-derived
cytokines IFN-γ, IL-4, and IL-17 [79–81]. Supernatants
from AD keratinocytes strongly stimulated PBMC prolifer-
ation in a GM-CSF-dependent manner [76] and GM-CSF
enhanced monocyte survival in chronic AD [82]. Other than
GM-CSF, AD keratinocytes release higher amounts of TNF-
α, IL-1α, and IL-1 receptor antagonist after INF-γ stimula-
tion [80].

Chronic AD skin lesions have significantly fewer IL-4
and IL-13 mRNA-expressing cells, but great numbers of
IL-5, GM-CSF, IL-12, and INF-γ mRNA-expressing cells
than acute AD [2]. After exposure to INF-γ, keratinocytes
express on their surface the adhesion molecule intercellular
adhesion molecule (ICAM-1), crucial for T cell retention in
the epidermis [83]. Keratinocyte overresponse to INF-γ
may serve as a further mechanism to enhance disease
severity in AD. More than 80% of T cells infiltrating the
skin lesions express the CLA molecule and CLA+ T cells
coexpress the CCR4 receptor, the ligand for TARC
(CCL17), and MDC (CCL22) [84]. CCR4 is also preferen-
tially expressed by Th2 lymphocytes [85]. Keratinocytes
might contribute to the selective recruitment of CCR4+

lymphocytes through the production of TARC [86].
RANTEs, and MCP-1, which attract both Th1 and Th2
cells, are expressed by infiltrating leukocytes but especially
by keratinocyte in AD skin lesions [87]. In AD skin lesions,
keratinocyte also might increase synthesis of eotaxin and
MCP-4 to activate and attract eosinophils [88].

AD skin is also deficient in the production of
keratinocyte derived antimicrobial peptides (α-defensins
and cathelicidins) needed for host defense against
bacteria, fungi, and viruses [89, 90]. Thus, once S. aureus
binds to AD skin, inadequate local host defense allows the
microbe to colonize and predispose patients to infection.
Th2 cytokines might inhibit the expression of human α-
defensin 2 [90], and human α-defensin 3 [91], thus
providing a reason why antimicrobial peptide expression
is low in AD skin. The lack of skin innate immune
responses might increase the propensity of disseminated
infectious with herpes simplex or vaccinia virus in AD [8].
Unless there is imminent danger of exposure to small-

pox, small pox vaccination is contraindicated in patients
with AD.

Superantigen and Inflammatory Cells

More than 90% of patients with AD have staphylococcus
aureus colonization of their skin lesion [92, 93]. An
important mechanism by which S. aureus contributes to
skin inflammation is the secretion of toxin known as SAgs
[94]. Epicutaneous sensitization with SAg might induce
allergic inflammatory skin immune response that charac-
terizes AD [95]. Most AD patients make specific IgE
antibodies direct against staphylococcal SAgs, and these
IgE antisuperantigens correlate with skin disease severity
[95]. SAgs may stimulate marked activation of T cells and
macrophages [96, 97]. SAgs bind directly, without antigen
processing, to MHC class II molecules on APCs and
trigger the potent activation of T cells through selected T
cell receptor β (TCR-β) variable region elements [94]. In
an analysis of the peripheral blood skin-homing CLA+ T
cells from AD patients colonized with superantigen-
producing S. aureus and T cells in their skin lesions, it
was found that a T cell receptor β chain expansion
consistent with superantigenic stimulation had occurred
[98, 99]. In animal studies, S. arueus binding was
significantly greater at skin sites with Th2 as compared to
Th1-medicated skin inflammation because of IL-4-induced
expression of fibronectin [100, 101]. Basophils from AD
patients with IgE antibodies directed to SAgs release
histamine on exposure to the relevant SAg [96].

SAgs might induce corticosteroid resistance in human
PBMCs [102]. Our recent study revealed that superantigen-
induced corticosteroid resistance of human T cells occurs
through the activation of the mitogen-activated protein
kinase kinase/extracellular signal-regulated kinase (MEK-
ERK) pathway [103].

CD4+CD25+ T regulatory (Treg) cells have been shown
to inhibit the development of airway eosinophilia in animal
models of asthma [104]. Patients with XLAAD/IPEX
disease [105] specifically lack CD4+CD25+ Treg cells and
have severe eczema, increased IgE levels and eosinophil
counts, and food allergy. Our recent study revealed that
SAgs have a great impact on the functional properties of
CD4+CD25+ Treg cells in AD [106]. AD have significantly
increased numbers of peripheral blood Treg cells with
normal immunosuppressive activity. However, after SAg
stimulation, CD4+CD25+ Treg cells are not anergic but
respond to the stimulation. Furthermore, when Treg cells
were mix with CD4+CD25+ T cells and stimulated with
SAg, Treg cells lose their immunosuppressive activity. In
our unpublished data, SAgs might induce GITR-ligand
expression on monocyte to reverse Treg cell function and
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SAgs also can subvert Treg cell function via the induction
of IL-2 production from PBMC.

Conclusion

AD is a common skin disease that usually presents during
early infancy and childhood. Its increasing incidence has
attracted public interest in this disease during the last few
years. Various studies indicate that AD has complex
immunological and inflammatory pathways. AD is a
biphasic inflammatory skin disease. Acute AD skin
inflammation is associated with increased Th2 cells, but
chronic AD results in the infiltration of inflammatory
IDECs, macrophages, and eosinophils. Increasing IL-12
production by these various cell types results in the switch
to a Th1-type cytokine milieu associated with increased
IFN-γ expression. Blood circulating CLA+ Th2 cells of AD
patients result in elevated serum IgE via IL-13 and prolong
eosinophil life span via IL-5. Increased levels of circulating
eosinophils and eosinophil granule proteins in the sera and
the urine of AD patients correlate with disease activity and
decrease in response to therapy for AD. More than 80% of
skin-infiltrating T lymphocyte express CLA molecule and
SAgs can induce T cell expression of CLA antigen via
stimulation of IL-12 production. Activated T cells may
induce keratinocyte apoptosis and the process is mediated
by T cell-derived IFN-γ, which upregulates Fas on
keratinocytes. Keratinocytes undergoing apoptosis release
INF-γ-induced chemokines that induces CXCR3 bearing T
cells toward the epidermis and might augment the skin
inflammation and keratinocyte apoptosis. FcɛRI activation
of LCs might release various chemokines to recruit the
other proinflammatory cells into the skin. LCs activated by
FcɛRI may drive native T cells into IL-4 producing TH2
cells. In addition, FcɛRI-activated IDECs, like DCs, prime
native T cells into INF-γ-producing Th1 cells and release
IL-12 and IL-18. More than 90% of patients with AD have
S. aureus colonization of their skin lesion. S. aureus may
release SAg and it may stimulate marked activation of T
cells and macrophages. AD have significantly increased
numbers of peripheral blood CD4+CD25+ Treg cells with
normal immunosuppressive activity. After SAg stimulation,
Treg cells lose their immunosuppressive activity suggesting
that Treg cells may not be functioning at the local skin level
in AD colonized with SAg-producing S. aureus.

SAgs might induce GITR-ligand expression on mono-
cyte to reverse Treg cell function and SAgs also can subvert
Treg cell function via the induction of IL-2 production from
PBMC.

Despite intensive research and significant progress in
AD study, a unifying pathogenetic concept of AD has not
been established. Future approaches in clinically and basic-

oriented research will be needed to complete our under-
standing of this complex disease. It is hoped that this will
provide us with the ability to develop effective therapeutic
strategies and prevention mechanisms for AD.
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