Skip to main content
Log in

A structural and morphological comparative study between chemically synthesized and photopolymerized poly(pyrrole)

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Electrochemical and chemical oxidation methods are the two common methods used for the preparation of poly(pyrrole). The two methods have been acknowledged greatly and extensively studied because of their feasibility in manipulating the properties of poly(pyrrole) according to the desired application. However, chemical oxidation method is considered the best method for the preparation of poly(pyrrole) in larger quantities. There are other methods through which poly(pyrrole) can be synthesized such as plasma polymerization and photopolymerization, which have so far received less attention in the literature. For this paper, chemical oxidation was used to prepare poly(pyrrole) by oxidizing pyrrole with CuCl2 under different emulsifying conditions. The surfactants used were sodium dodecyl sulfate and/or p-toluenesulfonic acid. Additionally, photopolymerization was also exploited to prepare poly(pyrrole) under similar emulsifying conditions. In this method, poly(pyrrole) was synthesized with the oxidizing ability of AgNO3 under UV radiation. All samples were investigated by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Powder X-ray Diffraction (XRD). Scanning electron microscope was used to compare the morphological differences, which occurred due to different experimental conditions. The thermal stability was studied using thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Shirakawa, H, Louis, EJ, MacDiarmid, AG, Chiang, CK, Heeger, AJ, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH) x .” J. Chem. Soc., Chem. Commun., 578–580 (1977). doi:10.1039/C39770000578

  2. Roncali (1992) Conjugated Poly(thiophenes)—Synthesis, Functionalization, and Applications. J Chem Rev 92, 711. doi:10.1021/cr00012a009

    Article  CAS  Google Scholar 

  3. Mirfakhrai T, Madden J D W, Baughman R. H, Polymer Artificial Muscles. Materials Today, 10(4), 30-38

    Article  CAS  Google Scholar 

  4. Hwang, L. S.; Ko, J. M.; Rhee, H. W.; Kim, Y. C.; A Polymer Humidity Sensor. Synth. Met. 57(1), 3671-3676 (1993)

    Article  CAS  Google Scholar 

  5. Baughman, R. H.; Shacklette, L. W.; Murthy, N. S.; Miller, G. G.; Elsenbaumer, R. L.; The Evolution of Structure during the Alkali Metal Doping of Polyacetylene and Poly(p-Phenylene). Mol Cryst Liq Cryst 253-261, 1985, 118

    Article  CAS  Google Scholar 

  6. Naegele, D.; Bittihn, R.; Electrically Conductive Polymers as Rechargeable Battery Electrodes. Solid State Ionics 28, 983-989, 1988

    Article  Google Scholar 

  7. HK Song, GTR Palmore (2006) Redox-Active Polypyrrole: Toward Polymer-Based Batteries. Adv. Mater, 18, 1764–1768. doi:10.1002/adma.200600375

    Article  CAS  Google Scholar 

  8. Kudoh, Y, Nishino, A, “Recent Development in Electrolytic Capacitors and Electric Double Layer Capacitors.” Electrochemistry, 69 (6) 397-406 (2001).

    CAS  Google Scholar 

  9. Stanke, D.; Hallensleben, M. L.; Toppare, L.; Graft Copolymers and Composites of Poly(Methyl Methacrylate) and Polypyrrole Part I. Synth. Met. 1993, 89-94, 72

    Article  Google Scholar 

  10. He, J, Gelling, VJ, Tallman, DE, Bierwagen, GP, Wallace, GG, Scanning Vibrating Electrode Studies of Electroactive Conducting Polymers on Active Metals, Vol. 843, pp. 228–253. Electroactive Polymers for Corrosion Control, ACS Symposium Series, American Chemical Society (ACS), Washington, DC (2003)

  11. Y Saito, N Fukuri, R Senadeera, T Kitamura, Y Wada, S Yanagida, Solid State Dye Sensitized Solar Cells Using In Situ Polymerized PEDOTs as Hole Conductor. Electrochemistry Communications 6 (2004) 71–74. doi:10.1016/j.elecom.2003.10.016

    Article  CAS  Google Scholar 

  12. L-Z Fan, J Maier; High-Performance Polypyrrole Electrode Materials for Redox Supercapacitors. Electrochem. Commun. 8, 6, 2006, 937-940

    Article  CAS  Google Scholar 

  13. Skotheim, TA, Reynolds, J, “Conjugated Polymers: Theory, Synthesis, Properties, and Characterization” CRC Press Tayor & Francis Group, AZ, USA, (2006).

    Google Scholar 

  14. Nalwa, HS, “Hand Book of Organic Conductive Molecules and Polymers: Conductive Polymers: Synthesis and Electrical Properties.” John Wiley & Sons, New York, 1997.

    Google Scholar 

  15. Maria Omastova, Miroslava Trchova, Jana Kovarova, Jaroslav Stejskal; Synthesis and Structural Study of Polypyrroles Prepared in the Presence of Surfactants. Synth. Met. 138 (2003) 447–455. doi:10.1016/S0379-6779(02)00498-8

    Article  CAS  Google Scholar 

  16. Kudoh Y, Akami K, Matsuya Y; Properties of Chemically Prepared Polypyrrole with an Aqueous Solution Containing Fe2(SO4)3, a Sulfonic Surfactant and a Phenol Derivative. Synth. Met. 95 (1998) 191-196. doi:10.1016/S0379-6779(98)00054-X

    Article  CAS  Google Scholar 

  17. DK Kim, KW Oh, HJ Ahn, SH Kim; Synthesis and Characterization of Polypyrrole Rod Doped with p-Toluenesulfonic Acid via Micelle Formation. J. Appl. Polym. Sci., Vol. 107, 3925–3932 (2008). doi:10.1002/app.27509

    Article  CAS  Google Scholar 

  18. G. J. Lee, S. H. Lee, K. S. Ahn, K. H. Kim; Synthesis and Characterization of Soluble Polypyrrole with Improved Electrical Conductivity. J. Appl. Polym. Sci., Vol. 84, 2583–2590 (2002). doi:10.1002/app.10281

    Article  CAS  Google Scholar 

  19. KS Jang, H Lee, B Moon; Synthesis and Characterization of Water Soluble Polypyrrole Doped with Functional Dopants. Synth. Met. 143 (2004) 289–294. doi:10.1016/j.synthmet.2003.12.013

    Article  CAS  Google Scholar 

  20. AJR Son, H Lee, B Moon; Morphology and Photoluminescence of Colloidal Polypyrrole Nanoparticles. Synth. Met. 157 (2007) 597–602. doi:10.1016/j.synthmet.2007.04.018

    Article  CAS  Google Scholar 

  21. KS Jang, HC Ko, B Moon, H Lee; Observation of Photoluminescence in Polypyrrole Micelles. Synth. Met. 150 (2005) 127-131. doi:10.1016/j.synthmet.2005.01.013

    Article  CAS  Google Scholar 

  22. C Saravanan, RC Shekhar, S Palaniappan; Synthesis of Polypyrrole Using Benzoyl Peroxide as a Novel Oxidizing Agent. Macromol. Chem. Phys. 2006, 207, 342–348. doi:10.1002/macp.200500376

    Article  CAS  Google Scholar 

  23. C. R. Martins, Y. M. de Almeida, G. C. do Nascimento, W. M. de Azevedo; Metal Nanoparticles Incorporation During the Photopolymerization of Polypyrrole. J Mater Sci (2006) 41:7413–7418. doi:10.1007/s10853-006-0795-z

    Article  CAS  ADS  Google Scholar 

  24. Breimer, MA, Yevgeny, G, Sy, S, Sadik, OA, “Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: A mechanistic insight.” Nano Lett., 1 305 (2001).

    Article  CAS  ADS  Google Scholar 

  25. Su, PG, Wang, CP, “Flexible Humidity Sensor Based on TiO2 Nanoparticles-Polypyrrole-Poly[3-(Methacrylamino)Propyl] Trimethyl Ammonium Chloride Composite Materials.” Sens. Actuators B: Chem., 129 538 (2007), 10.1016/j.snb.2007.09.011

    Article  Google Scholar 

  26. PG Su, LN Huang; Humidity Sensors Based on TiO2 Nanoparticles/Polypyrrole Composite Thin Films. Sensors and Actuators B 123 (2007) 501–507. doi:10.1016/j.snb.2006.09.052

    Article  Google Scholar 

  27. Yamada, K, Kimura, Y, Suzuki, S, Sone, J, Chen, J, Urabe, S, “Multiphoton-sensitized polymerization of pyrrole.” Chem. Lett., 35 (8) 908 (2006). doi:10.1246/cl.2006.908

    Article  CAS  Google Scholar 

  28. Rodriguez, I, Gonzalez-Velasco, J, “Self-sensitized photopolymerization of pyrrole.” J. Chem. Soc. Chem. Commun., 5 387 (1990). 10.1039/c39900000387

    Article  Google Scholar 

  29. Xing S, Zhao G; Morphology, Structure, and Conductivity of Polypyrrole Prepared in the Presence of Mixed Surfactants in Aqueous Solutions. J. Appl. Polym. Sci., Vol. 104, (2007) 1987–1996. doi:10.1002/app.25912

    Article  CAS  Google Scholar 

  30. L. Birladeanu, “Infrared Spectroscopy-Applications in Organic Chemistry”, Wiley-Interscience, New York, 1966

    Google Scholar 

  31. Tian B, Zerbi G; J.Chem.Phys.92 (6), Lattice Dynamics and Vibrational Spectra of Pristine and Doped Polypyrrole: Effective Conjugation Coordinate. 1990, p 3886. doi:10.1063/1.457794

    Article  CAS  ADS  Google Scholar 

  32. Tian B, Zerbi G; J.Chem.Phys.92 (6), Lattice Dynamics and Vibrational Spectra of Polypyrrole, 1990, p 3892. doi:10.1063/1.457795

    Article  CAS  ADS  Google Scholar 

  33. Sarac AS, Ustamehmetoglu B, Mustafaev MI, Erbril C, Uzelli G (1995) Oxidative Polymerization of Pyrrole in Polymer Matrix. J Polym Sci A33:1581. doi:10.1002/pola.1995.080331004

    Google Scholar 

  34. Ormond-Prout, J, Dupin, D, Armes, SP, Foster, NJ, Burchell, MJ, “Synthesis and Characterization of Polypyrrole-Coated Poly(Methyl Methacrylate) Latex Particles.” J. Mater. Chem., 19 1433-1442 (2009).

    Article  CAS  Google Scholar 

  35. VT Truong, BC Ennis, TG Turner, CM Jenden; Thermal Stability of Polypyrroles. Polymer International Vol. 27 Iss.2, 2007, 187–195

    Article  Google Scholar 

  36. Lee BH, Don SY, Shim JM, Kim WS (1997) Effects of Molecular Weight on Thermal Degradation of ABS. Applied Chemistry, 1(2), 698-701

    Google Scholar 

  37. Pedro M. Carrasco, Hans J. Grande, Milagros Cortazar, Juan M. Alberdi, Javier Areizaga, Jose A. Pomposo (2006) Structure–Conductivity Relationships in Chemical Polypyrroles of Low, Medium and High Conductivity. Synth. Met. 156, 420–425. doi:10.1016/j.synthmet.2006.01.005

    Article  CAS  Google Scholar 

  38. K. Cheah, M. Forsyth, V.-T. Truong, Ordering and Stability in Conducting Polypyrrole. Synth. Met. 94 (1998) 215-219. doi:10.1016/S0379-6779(98)00006-X

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the US Army Research Laboratory (Contract #: W911NF-04-2-0029) for sponsoring this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria J. Gelling.

Additional information

Presented at the 2008 FutureCoat! Conference, sponsored by FSCT, October 15–16, 2008, in Chicago, IL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasisomayajula, S.V., Qi, X., Vetter, C. et al. A structural and morphological comparative study between chemically synthesized and photopolymerized poly(pyrrole). J Coat Technol Res 7, 145–158 (2010). https://doi.org/10.1007/s11998-009-9186-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9186-0

Keywords

Navigation