Skip to main content
Log in

Reaction Kinetics at High Pressure and Temperature: Effects on Milk Flavor Volatiles and on Chemical Compounds with Nutritional and Safety Importance in Several Foods

  • ORIGINAL PAPER
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Consumers demand, in addition to excellent eating quality, high standards of safety and nutrition in ready-to-eat food. This requires a continuous improvement in conventional processing technologies and the development of new alternatives. Prevailing technologies such as thermal processing can cause extensive and undesirable chemical changes in food composition while minimal processing strategies cannot eliminate all microbial pathogens. This review focuses on pressure-assisted thermal processing, a new alternative for shelf-stable foods. Its implementation requires an analysis of reaction kinetics at high pressure and elevated temperature. Acceleration of the inactivation of bacterial spores by the synergistic effect of pressure and temperature is expected to allow processing at lower temperature, shorter process time, or a combination of both. Therefore, thermal degradation of quality is expected to be lower than that of conventional thermal processes. However, few studies have focused on the effect of the conditions required for the inactivation of bacterial spores on the kinetics of chemical reactions degrading food quality, particularly at the high temperatures required for the processing of low-acid foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous. (2009a). FDA accepts novel food sterilization process. In The Weekly (Food Technology publishers). Available at www4.ift.org/food-technology/newsletters/ift-weekly-newsletter/2009/march/030409.aspx. Accessed on July 12, 2010.

  • Anonymous. (2009b). The PATS process paves the way for advanced processing of next-generation shelf-stable foods. Available at www.nafwa.org/blog. Accessed on March 5, 2009.

  • Butz, P., Serfert, Y., Fernandez Garcia, A., Dieterich, S., Lindauer, R., Bognar, A., et al. (2004). Influence of high-pressure treatment at 25 °C and 80 °C on folates in orange juice and model media. Journal of Food Science, 79(3), 117–121.

    Google Scholar 

  • Calvo, M. M., & de la Hoz, L. (1992). Flavour of heated milks. A review. International Dairy Journal, 2, 69–81.

    Article  Google Scholar 

  • Christensen, K. R., & Reineccius, G. A. (1992). Gas chromatographic analysis of volatile sulfur compounds from heated milk using static headspace sampling. Journal of Dairy Science, 75, 2098–2104.

    Article  CAS  Google Scholar 

  • Contarini, G., Povolo, M., Leardi, R., & Toppino, P. M. (1997). Influence of heat treatment on the volatile compounds of milk. Journal of Agricultural and Food Chemistry, 45, 3171–3177.

    Article  CAS  Google Scholar 

  • Corrales, M., Butz, P., & Tauscher, B. (2008). Anthocyanin condensation reactions under high hydrostatic pressure. Food Chemistry, 110, 627–635.

    Article  CAS  Google Scholar 

  • Cruz, R. M. S., Rubilar, J. F., Ulloa, P. A., Torres, J. A., & Vieira, M. C. (2010). New food processing technologies: Development and impact on the consumer acceptability. In: Food quality: Control, analysis and consumer concerns. New York: Nova Science Publishers. in press.

    Google Scholar 

  • de Ancos, B., Sgroppo, S., Plaza, L., & Cano, M. P. (2002). Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. Journal of the Science of Food and Agriculture, 82(8), 790–796.

    Article  Google Scholar 

  • de Vleeschouwer, K., Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2010). The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. Journal of Agricultural and Food Chemistry. doi:10.1021/jf102697b.

    Google Scholar 

  • Domínguez Domínguez, J. (2006). Optimización simultánea para la mejora continua y reducción de costos en procesos. Ingeniería y Ciencia, 2(4), 145–162.

    Google Scholar 

  • El’Yanov, B. S., & Hamann, S. D. (1975). Some quantitative relationships for ionization reactions at high pressure. Australian Journal of Chemistry, 28, 945–954.

    Article  Google Scholar 

  • Hepburn, P., Howlett, J., Boeing, H., Cockburn, A., Constable, A. D., de Jong, N., et al. (2008). The application of post-market monitoring to novel foods. Food and Chemical Toxicology, 46(1), 9–33.

    Article  CAS  Google Scholar 

  • Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F., & Knorr, D. (1989). Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43(3), 99–107.

    Google Scholar 

  • Indrawati, O., Arroqui, C., Messagie, I., Nguyen, M. T., van Loey, A., & Hendrickx, M. E. (2004). Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. Journal of Agricultural and Food Chemistry, 52(3), 485–492.

    Article  CAS  Google Scholar 

  • Indrawati, O., van Loey, A., & Hendrickx, M. E. (2005). Pressure and temperature stability of 5-methyltetrahydrofolic acid: a kinetic study. Journal of Agricultural and Food Chemistry, 53(8), 3081–3087.

    Article  CAS  Google Scholar 

  • Jaeger, H., Janositz, A., & Knorr, D. (2010). The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathologie Biologie, 58, 207–213.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Park, S. J., Cho, Y. H., & Park, J. (2001). Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. Journal of Food Science, 66(9), 1355–1360.

    Article  CAS  Google Scholar 

  • Kübel, J., Ludwig, H., & Tauscher, B. (1997). Influence of UHP on vitamin A. In K. Heremans (Ed.), High pressure research in the biosciences and biotechnology (pp. 331–334). Leuven: University Press.

    Google Scholar 

  • Martínez Monteagudo, S. I., Leal Dávila, M., Saldaña, M. D. A., Torres, J. A., & Welti Chanes, J. (2010). Nuevas tecnologías para la industria de alimentos en México utilizando la alta presión hidrostática. Industria Alimentaria, 32, in press.

  • McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology: IUPAC recommendations (2nd ed.). Ames: Blackwell Science.

    Google Scholar 

  • Mussa, D. M., & Ramaswamy, H. S. (1997). Ultra high pressure pasteurization of milk: kinetics of microbial destruction and changes in physico-chemical characteristics. Lebensmittel-Wissenschaft und Technologie, 30, 551–557.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments (2nd ed.). New York: Wiley.

    Google Scholar 

  • Neuman, R. C., Kauzmann, W., & Zipp, A. (1973). Pressure dependence of weak acid ionization in aqueous buffers. The Journal of Physical Chemistry, 77(22), 2687–2691.

    Article  CAS  Google Scholar 

  • Nguyen, M. T., Indrawati, O., & Hendrickx, M. E. (2003). Model studies on the stability of folic acid and 5-methyltetrahydrofolic acid degradation during thermal treatment in combination with high hydrostatic pressure. Journal of Agriculture and Food Chemistry, 51, 3352–3357.

    Article  CAS  Google Scholar 

  • Nguyen, M. T., Oey, I., Hendrickx, M. E., & van Loey, A. (2006). Kinetics of (6R, S) 5-formyltetrahydrofolic acid isobaric–isothermal degradation in a model system. European Food Research and Technology, 223, 325–331.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34.

    Article  Google Scholar 

  • Oey, I., Verlinde, P., Hendrickx, M. E., & van Loey, A. (2006). Temperature and pressure stability of l-ascorbic acid and/or [6 s] 5-methyltetrahydrofolic acid: A kinetic study. European Food Research and Technology, 223, 71–77.

    Article  CAS  Google Scholar 

  • Otero, L., & Sanz, P. D. (2003). Modelling heat transfer in high pressure food processing: A review. Innovative Food Science & Emerging Technologies, 4, 121–134.

    Article  Google Scholar 

  • Otero, L., Molina-García, A. D., & Sanz, P. D. (2002a). Some interrelated thermophysical properties of liquid water and ice I: a user-friendly modelling review for high-pressure processing (www.if.csic.es/programs/ifiform.htm). Critical Reviews in Food Science and Nutrition, 42, 339–352.

    Article  Google Scholar 

  • Otero, L., Molina, A. D., Ramos, A. M., & Sanz, P. D. (2002b). A model for a real thermal control in high-pressure treatment of foods. Biotechnology Progress, 18, 904–908.

    Article  CAS  Google Scholar 

  • Otero, L., Ousegui, A., Guignon, B., le Bail, A., & Sanz, P. D. (2006). Evaluation of the thermophysical properties of tylose gel under pressure in the phase change domain. Food Hydrocolloids, 20(4), 449–460.

    Article  CAS  Google Scholar 

  • Otero, L., Ramos, A. M., de Elvira, C., & Sanz, P. D. (2007). A model to design high-pressure processes towards a uniform temperature distribution. Journal of Food Engineering, 78, 1463–1470.

    Article  Google Scholar 

  • Paredes-Sabja, D., Gonzalez, M., Sarker, M. R., & Torres, J. A. (2007). Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens Type A and Clostridium sporogenes in buffer solutions. Journal of Food Science, 72(6), M202–M206.

    Article  CAS  Google Scholar 

  • Pedrenski, F. (2007). The canon of potato science: Acrylamide. Potato Research, 50, 411–413.

    Article  Google Scholar 

  • Pérez Lamela, C., & Torres, J. A. (2008a). Pressure-assisted thermal processing: a promising future for high flavour quality and health-enhancing foods—Part 1. AgroFOOD Industry Hi-tech, 19(3), 60–62.

    Google Scholar 

  • Pérez Lamela, C., & Torres, J. A. (2008b). Pressure processing of foods: microbial inactivation and chemical changes in pressure-assisted thermal processing (PATP)—Part 2. AgroFOOD Industry Hi-tech, 19(4), 34–36.

    Google Scholar 

  • Ramirez, R., Saraiva, J. A., Perez Lamela, C., & Torres, J. A. (2009). Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing PATP. Food Engineering Reviews, 1(1), 16–30.

    Article  CAS  Google Scholar 

  • Sanchez Moreno, C., Plaza, L., Elez Martinez, P., de Ancos, B., Martin Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409.

    Article  CAS  Google Scholar 

  • Scanlan, R. A., Lindsay, R., Libbey, L. M., & Day, E. A. (1968). Heat-induced volatile compounds in milk. Journal of Dairy Science, 51, 1001–1007.

    Article  CAS  Google Scholar 

  • Shao, Y., & Ramaswamy, H. S. (2008). Clostridium sporogenes-ATCC 7955 spore destruction kinetics in milk under high pressure and elevated temperature treatment conditions. Food and Bioprocess Technology. doi:10.1007/s11947-008-0165-8. Published on line.

    Google Scholar 

  • Shao, Y., Zhu, S., Ramaswamy, H., & Marcotte, M. (2010). Compression heating and temperature control for high-pressure destruction of bacterial spores: An experimental method for kinetics evaluation. Food and Bioprocess Technology, 3(1), 71–78.

    Article  Google Scholar 

  • Shibamoto, T., Mihara, S., Nishimura, O., Kamiya, Y., Aitoku, A., & Hayashi, J. (1980). Flavor volatiles formed by heated milk. In G. Charalambous (Ed.), The analysis and control of less desirable flavors in foods and beverages (pp. 260–263). New York: Academic Press, Inc.

    Google Scholar 

  • Stewart, C. (2008). Spore inactivation by high pressure processing and pressure assisted thermal sterilization. In: Nonthermal Processing Workshop, 13-16 January 2008, Portland, OR.

  • Taoukis, P. S., Panagiotidis, P., Stoforos, N. G., Butz, P., Fister, H., & Tauscher, B. (1998). Kinetics of vitamin C degradation under high pressure-moderate temperature processing in model systems and fruit juices. Special Publication - Royal Society of Chemistry, 222, 310–316.

    CAS  Google Scholar 

  • Toledo, R. (2007). Thermal process calculations. Fundamentals of food process engineering (pp. 315–397). New York: Academic.

    Google Scholar 

  • Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1–2), 95–112.

    Article  Google Scholar 

  • Torres, J. A., & Velazquez, G. (2008). Hydrostatic pressure processing of foods. In S. Jun & J. Irudayaraj (Eds.), Food processing operations modeling: design and analysis (pp. 173–212). Boca Ratón: CRC Press Inc.

    Google Scholar 

  • Torres, J. A., Sanz, P. D., Otero, L., Pérez Lamela, C., & Saldaña, M. D. A. (2009a). Engineering principles to improve food quality and safety by high pressure processing. In E. Ortega-Rivas (Ed.), Chapter 14, processing effects on safety and quality of foods (pp. 379–414). Boca Raton: CRC Taylor & Francis, Inc.

    Chapter  Google Scholar 

  • Torres, J. A., Sanz, P. D., Otero, L., Pérez Lamela, C., & Saldaña, M. D. A. (2009b). Temperature distribution and chemical reactions in foods treated by pressure-assisted thermal processing. In E. Ortega-Rivas (Ed.), Chapter 15, processing effects on safety and quality of foods (pp. 415–440). Boca Raton: CRC Taylor & Francis, Inc.

    Chapter  Google Scholar 

  • Torres, J. A., Martínez Monteagudo, S. I., Leal Dávila, M., Saldaña, M. D. A., & Welti Chanes, J. (2010). Tecnologías de alta presión hidrostática para la pasteurización y esterilización comercial de alimentos. Logroño: VI Congreso Español de Ingeniería de Alimentos.

    Google Scholar 

  • Ulloa-Fuentes, P. A., Galotto, M. J., & Torres, J. A. (2008a). Procesos térmicos asistidos por presión (PTAP), el futuro de una nueva tecnología ya instalada en México - Part II. Industria Alimentaria (México), 30(3), 19–23.

    Google Scholar 

  • Ulloa-Fuentes, P. A., Galotto, M. J., & Torres, J. A. (2008b). Procesos térmicos asistidos por presión (PTAP), el futuro de una nueva tecnología ya instalada en México - Parte I. Industria Alimentaria (México), 30(2), 20, 22, 24, 26, 28, 29.

  • Valdez-Fragoso, A., Martínez-Monteagudo, S., Salais-Fierro, F., Welti-Chanes, J., & Mújica-Paz, H. (2007). Vacuum pulse-assisted pickling whole jalapeño pepper optimization. Journal of Food Engineering, 79, 1261–1268.

    Article  CAS  Google Scholar 

  • van den Broeck, I., Ludikhuyze, L., Weemaes, C., van Loey, A., & Hendrickx, M. E. (1998). Kinetics for isobaric−isothermal degradation of l-ascorbic acid. Journal of Agricultural and Food Chemistry, 46(5), 2001–2006.

    Article  Google Scholar 

  • van Loey, A., Ooms, V., Weemaes, C., van den Broeck, I., Ludikhuyze, L., Indrawati, O., et al. (1998). Thermal and pressure-temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: A kinetic study. Journal of Agriculture and Food Chemistry, 46, 5289–5294.

    Article  Google Scholar 

  • Vazquez Landaverde, P. A., Velazquez, G., Torres, J. A., & Qian, M. C. (2005). Quantitative determination of thermally derived off-flavor compounds in milk using solid-phase microextraction and gas chromatography. Journal of Dairy Science, 88(11), 3764–3772.

    Article  CAS  Google Scholar 

  • Vazquez Landaverde, P. A., Torres, J. A., & Qian, M. C. (2006a). Effect of high-pressure-moderate-temperature processing on the volatile profile of milk. Journal of Agricultural and Food Chemistry, 54(24), 9184–9192.

    Article  CAS  Google Scholar 

  • Vazquez Landaverde, P. A., Torres, J. A., & Qian, M. C. (2006b). Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Journal of Dairy Science, 89(8), 2919–2927.

    Article  CAS  Google Scholar 

  • Vazquez, P. A., Qian, M. C., & Torres, J. A. (2007). Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments. Journal of Food Science, 72(7), E389–E398.

    Article  Google Scholar 

  • Verlinde, P., Indrawati, O., Hendrickx, M. E., & van Loey, A. (2008). High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleraceae L. cv. Italica) tissue. Food Chemistry, 111(1), 220–229.

    Article  CAS  Google Scholar 

  • Weemaes, C. A., Ludikhuyze, L., van den Broeck, I., & Hendrickx, M. E. (1999). Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase. Journal of Food Science, 64, 823–827.

    Article  CAS  Google Scholar 

  • Yaylayan, V., Wnorowski, A., & Perez Locas, C. (2003). Why asparagine needs carbohydrates to generate acrylamide. Journal of Agricultural and Food Chemistry, 51, 1753–1757.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdez-Fragoso, A., Mújica-Paz, H., Welti-Chanes, J. et al. Reaction Kinetics at High Pressure and Temperature: Effects on Milk Flavor Volatiles and on Chemical Compounds with Nutritional and Safety Importance in Several Foods. Food Bioprocess Technol 4, 986–995 (2011). https://doi.org/10.1007/s11947-010-0489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0489-z

Keywords

Navigation