Skip to main content

Advertisement

Log in

Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of pulse duration on efficiency of disintegration of apple tissue by pulsed electric fields (PEF) was studied. The samples (26-mm diameter, 10-mm height) were treated by PEF at electric field strength E between 100 and 400 V/cm, pulse duration t i of 10, 100, 1,000 μs, inter-pulse duration Δt of 100 μs and different number of pulses n. Both the degree and the time evolution of tissue damage were quantified by electrical conductivity disintegration index Z and characteristic damage time τ, respectively. The samples exposed to the same PEF treatment time nt i showed noticeably higher disintegration efficiency for larger pulse duration. The synergism of PEF and thermal treatment with temperature T (20–50 °C) was demonstrated. The Arrhenius dependence of τ(T) for PEF treatment at E = 100 V/cm gave the decreasing activation energy W as a function of t i, (Q ≈ 164 kJ/mol at t i = 10 μs, Q ≈ 109 kJ/mol at t i = 100 μs and Q ≈ 66 kJ/mol at t i = 1,000 μs). Textural relaxation data supported the higher damage efficiency for longer pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PEF:

pulsed electric fields

C :

specific capacitance of cell membrane (F/m2)

D :

sample diameter (mm)

E :

electric field strength (V/cm)

F :

force (N)

h :

sample height (mm)

h m :

membrane thickness (nm)

n :

number of pulses

N :

number of trains

r 2 :

coefficient of determination

R :

radius of a spherical cell (m)

R g :

=8.314 J K−1 mol−1, the universal gas constant

t c :

membrane charging time (s)

t I :

pulse duration (s)

t PEF :

total time of electrical treatment (s)

Δt :

inter-pulse duration (s)

Δt t :

inter-train pause (s)

T :

temperature (°C)

Q :

activation energy (kJ/mol)

u m :

transmembrane potential (V)

W :

electrical energy input (KJ/kg)

Z :

electrical conductivity disintegration index

d:

maximally damaged

e:

extracellular medium

m:

membrane

max:

maximum

u:

untreated

τ :

characteristic damage time (s)

τ :

limiting characteristic damage time (s)

θ :

angle between the external field E and the radius-vector r

σ :

electrical conductivity (S/m)

References

  • Abram, F., Smelt, J. P. P. M., Bos, R., & Wouters, P. C. (2003). Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. Journal of Applied Microbiology, 94, 571–579.

    Article  CAS  Google Scholar 

  • Aronsson, K., Lindgren, M., Johansson, B. R., & Rönner, U. (2001). Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2, 41–54.

    Article  Google Scholar 

  • Barsotti, L., & Cheftel, J. C. (1998). Traitement des aliments par champs electriques pulses. Science des Aliments, 18, 584–601.

    Google Scholar 

  • Canatella, P. J., Karr, J. F., Petros, J. A., & Prausnitz, M. R. (2001). Quantitative study of electroporation mediated uptake and cell viability. Biophysics Journal, 80, 755–764.

    CAS  Google Scholar 

  • Chang, D. C. (1989) Cell poration and cell fusion using an oscillating electric field. Biophysics Journal, 56, 641–652.

    Article  CAS  Google Scholar 

  • Fincan, M., & Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 55, 223–230.

    Article  Google Scholar 

  • Fincan, M., DeVito, F., & Dejmek, P. (2004). Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of Food Engineering, 64, 381–388.

    Article  Google Scholar 

  • Kotnik, T., Miklavcic, D., & Slivnik, T. (1998). Time course of transmembrane voltage induced by time-varying electric fields: A method for theoretical analysis and its application. Bioelectrochemistry and Bioenergetics, 45, 3–16.

    Article  CAS  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44, 213–223.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54, 337–346.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., Ghnimi, S., & Vorobiev, E. (2005). Does electroporation occur during the ohmic heating of food. Journal of Food Science, 70(5), 308–311.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., & Vorobiev, E. (2004). Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innovative Food Science & Emerging Technologies, 5(1), 9–16.

    Article  Google Scholar 

  • Lebovka, N. I., Shynkaryk, M. V., El-Belghiti, K., Benjelloun, H., & Vorobiev, E. (2007) Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. Journal of Food Engineering, 80(2), 639–644.

    Article  Google Scholar 

  • Lin, T. A., & Pitt, R. E. (1986). Rheology of apple and potato tissue as affected by cell turgor pressure. Journal of Texture Studies, 17, 291–313.

    Article  Google Scholar 

  • Mañas, P., Barsotti, L., & Cheftel, J. C. (2000). Microbial inactivation by pulsed electric fields in a batch treatment chamber: Effects of some electrical parameters and food constituents. Innovative Food Science and Emerging Technologies, 2, 239–249.

    Article  Google Scholar 

  • Mañas, P., & Vercet, A. (2006). Effect of Pulsed Electric Fields on Enzymes and Food Constituents. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 131–153). New York, USA: Springer.

    Google Scholar 

  • Martín-Belloso, O., Vega-Mercado, H., Qin, B. L., Chang, F. J., Barbosa-Cánovas, G. V., & Swanson, B. G. (1997). Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. Journal of Food Processing and Preservation, 21, 193–208.

    Article  Google Scholar 

  • Mastwijk, H. (2006). Pulsed power systems for application of pulsed electric fields in the food industry. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 223–239). New York, USA: Springer.

    Google Scholar 

  • Pauly, H., & Schwan, H. P. (1959). Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Zeitschrift für Naturforschung, B14, 125–131.

    Google Scholar 

  • Raso, J., Álvarez, I., Condón, S., & Sala-Trepat, F. J. (2000). Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science and Emerging Technologies, 1, 21–29.

    Article  Google Scholar 

  • Sahimi, M. (1998). Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Physics Reports, 306, 213–395.

    Article  CAS  Google Scholar 

  • Sampedro, F., Rivas, A., Rodrigo, D., Martínez, A., & Rodrigo, M. (2007). Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. Journal of Food Engineering, 80(3), 931–938.

    Article  Google Scholar 

  • Schwan, H. P. (1957) Electrical properties of tissue and cell suspensions. In J. H. Lawrence & A. Tobias (Eds.), Advances in biological and medical physics (pp. 147–209). New York, USA: Academic.

    Google Scholar 

  • Stauffer, D., & Aharony, A. (1992). Introduction to percolation theory. London, Great Britain: Taylor & Francis.

    Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2006). Applications of pulsed electric fields technology for the food industry. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 197–223). New York, USA: Springer.

    Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing, 46(6), 537–546.

    Article  CAS  Google Scholar 

  • Topfl, S. (2006). Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing – Applications, process and equipment design and cost analysis. PhD thesis. Institut für Lebensmitteltechnologie und Lebensmittelchemie, Berlin, Germany.

  • Qin, B. L., Zhang, Q., Swanson, B. G., & Pedrow, P. D. (1994). Inactivation of microorganisms by different pulsed electric fields of different voltage waveforms. Institute of Electrical and Electronics Engineers Transaction on Industry Applications, 1(6), 1047–1057.

    Google Scholar 

  • Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N. I., & Bazhal, M. I. (2005). Pulsed electric field assisted extraction of juice from food plants. In G. Barbosa-Canovas, M. S. Tapia & M. P. Cano (Eds.), Novel food processing technologies (pp. 105–130). New York, USA: CRC.

    Google Scholar 

  • Vorobiev, E., & Lebovka, N. I. (2006). Extraction of intercellular components by pulsed electric fields. In J. Raso & H. Heinz (Eds.), Pulsed electric field technology for the food industry. Fundamentals and applications (pp. 153–194). New York, USA: Springer.

    Google Scholar 

  • Wang, W. C., & Sastry, S. K. (2002). Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technologies, 3, 371–377.

    Article  Google Scholar 

  • Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics, 41(1), 135–160.

    Article  CAS  Google Scholar 

  • Wouters, P. C., Dutreux, N., Smelt, J. P. P. M., & Lelieveld, H. L. M. (1999). Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Applied and Environmental Microbiology, 65, 5364–5371.

    CAS  Google Scholar 

  • Wouters, P. C., & Smelt, J. P. P. M. (1997). Inactivation of microorganisms with pulsed electric fields: Potential for food preservation. Food Biotechnology, 11(3), 193–229.

    Article  Google Scholar 

  • Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology, Biochemistry and Pharmacology, 105, 175–256.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate financial support from the “Pole Regional Genie des Procedes” (Picardie, France). Authors also thank Dr. N.S. Pivovarova for her help with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugéne Vorobiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vito, F., Ferrari, G., I. Lebovka, N. et al. Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields. Food Bioprocess Technol 1, 307–313 (2008). https://doi.org/10.1007/s11947-007-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0017-y

Keywords

Navigation