Skip to main content

Advertisement

Log in

Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High pressure processing is a food processing method which has shown great potential in the food industry. Similar to heat treatment, high pressure processing inactivates microorganisms, denatures proteins and extends the shelf life of food products. But in the meantime, unlike heat treatments, high pressure treatment can also maintain the quality of fresh foods, with little effects on flavour and nutritional value. Furthermore, the technique is independent of the size, shape or composition of products. In this paper, many aspects associated with applying high pressure as a processing method in the food industry are reviewed, including operating principles, effects on food quality and safety and most recent commercial and research applications. It is hoped that this review will promote more widespread applications of the technology to the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

P :

pressure (Pa)

T :

temperature (°C)

ρ :

density (kg m−3)

η :

viscosity (Pa s)

C p :

specific heat (W kg−1 K−1)

D :

characteristic length (m)

k :

inactivation constant

λ :

thermal conductivity (W/m1 K)

t :

time

α :

thermal expansion coefficient (K−1)

A, B, C :

mass of each designated food component

CH :

compression heating (°C)

M:

food medium

W:

water

p:

food product

pp:

food product packaging

hyd_me:

hydraulic mechanisms in processing medium

hyd_p:

hydraulic mechanisms in product

th_me:

thermal conduction in processing medium

th_p:

thermal conduction in food product

th_pp:

thermal conduction in product packaging

in:

inactivation

x, y, z:

designated food component

food:

composite food material

References

  • Ahmed, J., Ramaswamy, H. S., Alli, I., & Ngadi, M. (2003). Effect of high pressure on rheological characteristics of liquid egg. Lebensmittel-Wissenschaft und-Technologie, 36, 517–524.

    CAS  Google Scholar 

  • Alpas, H., & Bozoglu, F. (2003). Efficiency of high pressure treatment for destruction of Listeria monocytogenes in fruit juices. FEMS Immunology and Medical Microbiology, 35(3), 269–273.

    CAS  Google Scholar 

  • Apichartsrangkoon, A. (2003). Effects of high pressure on rheological properties of soy protein gels. Food Chemistry, 80(1), 55–60.

    CAS  Google Scholar 

  • Apichartsrangkoon, A., & Ledward, D. A. (2002). Dynamic viscoelastic behaviour of high pressure treated gluten–soy mixtures. Food Chemistry, 77(3), 317–323.

    CAS  Google Scholar 

  • Basak, S., & Ramaswamy, H. (1998). Effect of high pressure processing on the texture of selected fruits and vegetables. Journal of Texture Studies, 29, 587–601.

    Google Scholar 

  • Baxter, I. A., Easton, K., Schneebeli, K., & Whitfield, F. B. (2005). High pressure processing of Australian navel orange juices: Sensory analysis and volatile flavor profiling. Innovative Food Science and Emerging Technologies, 6(4), 372–387.

    CAS  Google Scholar 

  • Bertram, H. C., Whittaker, A. K., Shorthose, W. R., Andersen, H. J., & Karlsson, A. H. (2004). Water characteristics in cooked beef as influenced by ageing and high-pressure treatment—an NMR micro imaging study. Meat Science, 66, 301–306.

    Google Scholar 

  • Besser, R. E., Lett, S. M., Weber, J. T., Doyle, M. P., Barrett, T. J., Wells, J. G., et al. (1993). An outbreak of diarrhoea and hemolytic uremic syndrome from E. coli O157:H7 in fresh-pressed apple cider. Journal of American Medical Association, 269, 2217–2220.

    CAS  Google Scholar 

  • Bradley, D. W., Hess, R. A., Tao, F., Sciaba-Lentz, L., Remaley, A. T., Laugharn, J. A., et al. (2000). Pressure cycling technology: a novel approach to virus inactivation in plasma. Transfusion, 40(2), 193–200.

    CAS  Google Scholar 

  • Brown, P., Meyer, R., Cardone, F., & Pocchiari, M. (2003). Ultra-high-pressure inactivation of prion infectivity in processed meat: a practical method to prevent human infection. Proceedings of the National Academy of Sciences, 100(10), 6093–6097.

    CAS  Google Scholar 

  • Butz, P., Koller, W. D., Tauscher, B., & Wolf, S. (1994). Ultra-high pressure processing of onions: Chemical and sensory changes. Lebensmittel-Wissenschaft und-Technologie, 27(5), 463–467.

    CAS  Google Scholar 

  • Caner, C., Hernandez, R. J., & Harte, B. R. (2004). High-pressure processing effects on the mechanical, barrier and mass transfer properties of food packaging flexible structures: A critical review. Packaging Technology and Science, 17(1), 23–29.

    CAS  Google Scholar 

  • Cano, M. P., & de Ancos, B. (2005). Advances in use of high pressure to processing and preservation of plant foods. In G. V. Barbosa-Canovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies Ch 13(pp. 361–373). Boca Raton, FL, US: CRC Press.

    Google Scholar 

  • Carballo, J., Cofrades, S., Solas, M. T., & Jimenez-Colmenero, F. (2000). High pressure/thermal treatment of meat batters prepared from freeze-thawed pork. Meat Science, 544, 357–364.

    Google Scholar 

  • Cheftel, J. C., & Culioli, J. (1997). Effects of high pressure on meat: A review. Meat Science, 46(3), 211–236.

    CAS  Google Scholar 

  • Cheftel, J. C., Levy, J., & Dumay, E. (2000). Pressure-assisted freezing and thawing: principles and potential applications. Food Reviews International, 16(4), 453–483.

    CAS  Google Scholar 

  • Cheftel, J. C., Thiebaud, M., & Dumay, E. (2002). Pressure-assisted freezing and thawing of foods: A review of recent studies. High Pressure Research, 22(3–4), 601–611.

    Google Scholar 

  • Chen, C. S., & Tseng, C. W. (1997). Effect of high hydrostatic pressure on the temperature dependence of Saccharomyces cerevisiae and Zygosaccharomyces rouxii. Process Biochemistry, 32(4), 337–343.

    CAS  Google Scholar 

  • Chen, C. R., Zhu, S. M., Ramaswamy, H. S., Marcotte, M., & LeBail, A. (2007). Computer simulation of high pressure cooling of pork. Journal of Food Engineering, 79, 401–409.

    Google Scholar 

  • Corkindale, D. (2006). Technology too risky for major players. Food Technology and Ingredients, 31(2), 56–57.

    Google Scholar 

  • Crelier, S., Robert, M. C., Claude, J., & Juillerat, M. A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. Journal of Agricultural and Food Chemistry, 49(11), 5566–5575.

    CAS  Google Scholar 

  • Da Poian, A. T., Johnston, J. E., & Silva, J. L. (1994). Differences in stability of the three components of cowpea mosaic virus: Implications for virus assembly and disassembly. Biochemistry, 33, 8339–8346.

    Google Scholar 

  • De Belie, N. (2002). Use of physico-chemical methods for assessment of sensory changes in carrot texture and sweetness during cooking. Journal of Texture Studies, 33, 367–388.

    Google Scholar 

  • Denys, S., VanLoey, A. M., & Hendrickx, M. E., & Tobback, P. P. (1997). Modeling heat transfer during high-pressure freezing and thawing. Biotechnology Progress, 13(4), 416–423.

    CAS  Google Scholar 

  • Denys, S., Van Loey, A. M., & Hendrickx, M. E. (2000). Modelling conductive heat transfer during high-pressure thawing processes: Determination of latent heat as a function of pressure. Biotechnology Progress, 16(3), 447–455.

    CAS  Google Scholar 

  • Denys, S., Schluter, O., Hendrickx, M. E., & Knorr, D. (2001). Effects of high pressure on water–ice transitions in foods. In M. E. Hendrickx, & D. Knorr (Eds.), Ultra high pressure treatment of food, Ch. 8.(pp. 214–249). London, UK: Kluwer.

    Google Scholar 

  • Doyle, M. P. (1991). Escherichia coli O157: H7 and its significance in foods. International Journal of Food Microbiology, 13, 207–216.

    Google Scholar 

  • Erkmen, O., & Karatas, S. (1997). Effect of high hydrostatic pressure on Staphylococcus aureus in milk. Journal of Food Engineering, 33, 257–262.

    Google Scholar 

  • Fachin, D., Van Loey, A. M., Nguyen, B. L., Verlent, I., & Indrawati Hendrickx, M. E. (2002). Comparative study of the inactivation kinetics of pectinmethylesterase in tomato juice and purified form. Biotechnology Progress, 18(4), 739–744.

    CAS  Google Scholar 

  • Fachin, D., Smout, C., Verlent, I., Nguyen, B. L., Van Loey, A. M., & Hendrickx, M. E. (2004). Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing. Journal of Agricultural and Food Chemistry, 52(9), 2697–2703.

    CAS  Google Scholar 

  • Fernandez, P. P., Prestamo, G., Otero, L., & Sanz, P. D. (2006). Assessment of cell damage in high-pressure-shift frozen broccoli: Comparison with market samples. European Food Research and Technology, 224(1), 101–107.

    CAS  Google Scholar 

  • Fernández-Martín, F. (2004). Comments to the article: ‘High pressure freezing and thawing of foods: A review’: By LeBail A, Chevalier D, Mussa DM, Ghoul M. International Journal of Refrigeration 25:504–13. International Journal of Refrigeration, 27(5), 567–568.

  • Fernandez-Martin, F., Otero, L., Solas, M. T., & Sanz, P. (2000). Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. Journal of Food Science, 65(6), 1002–1008.

    CAS  Google Scholar 

  • Forst, P., Werner, F., & Delgado, A. (2000). The viscosity of water at high pressures—especially at subzero degrees centigrade. Rheologica Acta, 39(6), 566–573.

    CAS  Google Scholar 

  • Fuchigami, M., Kato, N., & Teramoto, A. (1998). High-pressure-freezing effects on textural quality of Chinese cabbage. Journal of Food Science, 63(1), 122–125.

    CAS  Google Scholar 

  • Gao, Y.-L., Ju, X.-R., & Jiang, H.-H. (2006a). Use of response surface methodology to investigate the effect of food constituents on Staphylococcus aureus inactivation by high pressure and mild heat. Process Biochemistry, 41(2), 362–369.

    CAS  Google Scholar 

  • Gao, Y.-L., Ju, X.-R., Qiu, W.-F., & Jiang, H.-H. (2007). Investigation of the effects of food constituents on Bacillus subtilis reduction during high pressure and moderate temperature. Food Control, 18(10), 1250–1257.

    CAS  Google Scholar 

  • Garcia-Graells, C., Kristel, J., Hauben, A., & Michiels, C. W. (1999). High-pressure inactivation and sublethal injury of pressure-resistant Escherichia coli mutants in fruit juices. Applied Environmental Microbiology, 64, 1566–1568.

    Google Scholar 

  • Gaspar, L. P., Silva, A. C. B., Gomes, A. M. O., Freitas, M. S., Ano Bom, A. P. D., Schwarcz, W. D., et al. (2002). Hydrostatic pressure induces the fusion-active state of enveloped viruses. Journal of Biological Chemistry, 277, 8433–8439.

    CAS  Google Scholar 

  • Gervilla, R., Ferragut, V., & Guamis, B. (2001). High hydrostatic pressure effects on color and milk-fat globule of ewe’s milk. Journal of Food Science, 66(6), 880–885.

    CAS  Google Scholar 

  • Ghani, A. G. A., & Farid, M. M. (2006). Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics. Journal of Food Engineering, 80(4), 1031–1042.

    Google Scholar 

  • Guiavarc’h, Y., Segovia, O., Hendrickx, M., & Van Loey, A. (2005). Purification, characterization, thermal and high-pressure inactivation of a pectin methylesterase from white grapefruit (Citrus paradisi). Innovative Food Science & Emerging Technologies, 6(4), 363–371.

    CAS  Google Scholar 

  • Harte, F., Luedecke, L., Swanson, B., & Barbosa-Canovas, G. V. (2003). Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal Dairy Science, 86, 1074–1082.

    CAS  Google Scholar 

  • Hartmann, C. (2002). Numerical simulation of thermodynamic and fluid-dynamic processes during the high-pressure treatment of fluid food systems. Innovative Food Science & Emerging Technologies, 3(1), 11–18.

    CAS  Google Scholar 

  • Hartmann, C., & Delgado, A. (2002). Numerical simulation of convective and diffusive transport effects on a high-pressure-induced inactivation process. Biotechnology and Bioengineering, 79(1), 94–104.

    CAS  Google Scholar 

  • Hartmann, C., & Delgado, A. (2003). The influence of transport phenomena during high-pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnology and Bioengineering, 82(6), 725–735.

    CAS  Google Scholar 

  • Hartmann, C., & Delgado, A. (2004). Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. Journal of Food Engineering, 37(7), 977–987.

    Google Scholar 

  • Hartmann, C., Delgado, A., & Szymczyk, J. (2003). Convective and diffusive transport effects in a high pressure induced inactivation process of packed food. Journal of Food Engineering, 59(1), 33–44.

    Google Scholar 

  • Hartmann, C., Schuhholz, J.-P., Kitsubun, P., Chapleau, N., LeBail, A., & Delgado, A. (2004). Experimental and numerical analysis of the thermofluiddynamics in a high-pressure autoclave. Food Science & Emerging Technologies, 5(4), 399–411.

    Google Scholar 

  • Hartmann, C., Mathmann, K., & Delgado, A. (2006). Mechanical stresses in cellular structures under high hydrostatic pressure. Food Science & Emerging Technologies, 7(1–2), 1–12.

    Google Scholar 

  • Hayashi, R. (1995). Advances in high pressure food processing technology in Japan. Food Processing: Recent Developments, Gaonkar AG, 9, 185–195.

    Google Scholar 

  • Hite, B. H. (1899). The effect of high pressure in the preservation of milk. West Virginia Agricultural Experimental Station Bulletin, 58, 15–35.

    Google Scholar 

  • Hjelmqwist, J. (2005). Commercial high pressure equipment. In G. V. Barbosa-Canovas, M. S. Tapia, & M. P. Cano (Eds.), Novel food processing technologies, Chapter 16 (pp. 361–373). Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Hodge, K. (2003). Salads still hot after all these years. Fresh cut magazine (pp. 22–24). Yakima: Columbia Publishing and Design, July.

  • Hogan, E., Kelly, A. L., & Sun, D.-W. (2005). High pressure processing of foods: An overview. In D.-W. Sun (Eds.), Emerging technologies for food processing, Chapter 1 (pp. 3–32). London, UK: Elsevier.

    Google Scholar 

  • Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F., & Knorr, D. (1989). Biological effects of high hydrostatic pressure on food micro-organisms. Food Technology, 4, 399–107.

    Google Scholar 

  • Hotek, J. P., & Morrison, J. J. (2006). Method and apparatus for material handling for a food product using high pressure pasteurization. U.S. Patent 2006257552; (16 Nov 2006).

  • Hugas, M., Garriga, M., & Monfort, J. M. (2002). New mild technologies in meat processing: High pressure as a model technology. Meat Science, 62, 359–371.

    Google Scholar 

  • Huppertz, T., Fox, P. F., & Kelly, A. L. (2003). High pressure-induced changes in the creaming properties of bovine milk. Innovative Food Science & Emerging Technologies, 4(4), 349–359.

    Google Scholar 

  • Huppertz, T., Hinz, K., Zobrist, M. R., Uniacke, T., Kelly, A. L., & Fox, P. F. (2005). Effects of high pressure treatment on the rennet coagulation and cheese-making properties of heated milk. Innovative Food Science & Emerging Technologies, 6(3), 279–285.

    CAS  Google Scholar 

  • Huppertz, T., Smiddy, M. A., Upadhyay, V. K., & Kelly, A. L. (2006). High-pressure-induced changes in bovine milk: A review. International Journal of Dairy Technology, 59(2) 58–66.

    CAS  Google Scholar 

  • Jung, S., De Lamballerie-Anton, M., & Ghoul, M. (2000). Textural changes in bovine meat treated with high pressure. High Pressure Research, 19(1–6), 459–464.

    Google Scholar 

  • Jung, S., Ghoul, M., & de Lamballerie-Anton, M. (2003). Influence of high pressure on the color and microbial quality of beef meat. Lebensmittel-Wissenschaft-und-Technologie- Food Science and Technology, 36(6), 625–631.

    CAS  Google Scholar 

  • Kalichevsky, M. T., Knorr, D., & Lillford, P. J. (1995). Potential food applications of high-pressure effects on ice-water transitions. Trends in Food Science & Technology, 6, 253–258.

    CAS  Google Scholar 

  • Kingsley, D. H., Hoover, D. G., Papfragkou, E., & Richards, G. P. (2002). Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 65, 1605–1609.

    Google Scholar 

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochemica et Biophysica Acta, 1764(3), 619–631.

    CAS  Google Scholar 

  • Kowalczyk, W., & Delgado, A. (2007a). On convection phenomena during high pressure treatment of liquid media. High Pressure Research, 27(1), 85–92.

    CAS  Google Scholar 

  • Kowalczyk, W., & Delgado, A. (2007b). Dimensional analysis of thermo-fluid-dynamics of high hydrostatic pressure processes with phase transition. International Journal of Heat and Mass Transfer, 50(15–16), 3007–3018.

    Google Scholar 

  • Kowalczyk, W., Hartmann, C., & Delgado, A. (2004). Modelling and numerical simulation of convection driven high pressure induced phase changes. International Journal of Heat and Mass Transfer, 47(5), 1079–1089.

    CAS  Google Scholar 

  • Kowalczyk, W., Hartmann, C., Luscher, C., Pohl, M., Delgado, A., & Knorr, D. (2005). Determination of thermophysical properties of foods under high hydrostatic pressure in combined experimental and theoretical approach. Innovative Food Science & Emerging Technologies, 6(3), 318–326.

    Google Scholar 

  • Krebbers, B., Matser, A. M., Koets, M., & Van den Berg, R. W. (2002). Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 54, 27–33.

    Google Scholar 

  • Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M., & Van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, 4(4), 377–385.

    Google Scholar 

  • Kuebel, J., Ludwig, H., Marx, H., & Tauscher, B. (1996). Diffusion of aroma compounds into packaging films under high-pressure. Packaging Technology and Science, 9(3), 143–152.

    CAS  Google Scholar 

  • Lakshmanan, R., Piggott, J. R., & Paterson, A. (2003). Potential applications of high pressure for improvement in salmon quality. Trends in Food Science & Technology, 14, 354–363.

    CAS  Google Scholar 

  • Lambadarios, E., & Zabetakis, I. (2002). Does high hydrostatic pressure affect fruit esters? Lebensmittel-Wissenschaft-und-Technologie- Food Science and Technology, 35(4), 362–366.

    CAS  Google Scholar 

  • LeBail, A. (2004). Reply to the ‘Letter to the Editor’: by the corresponding author A. LeBail of the Article: ‘High pressure freezing and thawing of foods: A review’ by LeBail A, Chevalier D, Mussa DM, Ghoul M. International Journal of Refrigeration 25, 504–13. International Journal Refrigeration, 27(5), 569.

  • LeBail, A., Boillereaux, L., Davenel, A., Hayert, M., Lucas, T., & Monteau, J. Y. (2003). Phase transition in foods: Effect of pressure and methods to assess or control phase transition. Innovative Food Science & Emerging Technologies, 4(1), 15–24.

    CAS  Google Scholar 

  • LeBail, A., Hamadami, N., & Bahuaud, S. (2006). Effect of high-pressure processing on the mechanical and barrier properties of selected packagings. Packaging Technology and Science, 19(4), 237–243.

    CAS  Google Scholar 

  • Lemmon, E. W., McLinden, M. O., & Friend, D. G. (2005). Thermophysical properties of fluid systems. In P. J. Linstron, & W. G. Mallard (Eds.), NIST chemistry WebBook, NIST standard reference database number 69. June 2005. National Institute of Standards and Technology. Gaitherburg MD, 20899. Available from http://webbook.nist.gov.

  • Linton, M., & Patterson, M. F. (2000). High pressure processing of foods for microbiological safety and quality. Acta Microbiologica et Immunologica Hungarica, 47(2–3), 175–182.

    CAS  Google Scholar 

  • Linton, M., McClements, J. M. J., & Patterson, M. F. (2000). The combined effect of high pressure and storage on the heat sensitivity of Escherichia coli 0157:H7. Innovative Food Science & Emerging Technologies, 1(1), 31–37.

    Google Scholar 

  • Linton, M., McClements, J. M. J., & Patterson, M.F. (2001). Inactivation of pathogenic Escherichia coli in skimmed milk using high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 2(2), 99–104.

    Google Scholar 

  • Lopez-Fandino, R. (2006). Functional improvement of milk whey proteins induced by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 46(4), 351–363.

    CAS  Google Scholar 

  • Lopez-Pedemonte, T., Roig-Sagués, A., De Lamo, S., Gervilla, R., & Buenaventura, G. (2007). High hydrostatic pressure treatment applied to model cheeses made from cow’s milk inoculated with Staphylococcus aureus. Food Control, 18(5), 441–447.

    Google Scholar 

  • Lopez-Rubio, A., Lagaron, J. M., Hernandez-Munoz, P., Almenar, E., Catala, R., Gavara, R., et al. (2005). Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innovative Food Science & Emerging Technologies, 6(1), 51–58.

    CAS  Google Scholar 

  • Ludikhuyze, L., & Hendrickx, M. E. (2001). Effects of high pressure on chemical reactions related to food quality. In M. E. Hendrickx, & D. Knorr (Eds.), Ultra high pressure treatment of food, Chapter 6 (pp. 17–185). London, UK: Kluwer.

    Google Scholar 

  • Ludwig, H., & Schreck, C. (1997). The inactivation of vegetative bacteria by pressure. In K. Heremans (Eds.), High pressure research in bioscience and biotechnology (pp. 221–224). Leuven: Leuven University Press.

    Google Scholar 

  • Ludwig, H., van Almsick, G., & Schreck, C. (2002). The effect of high hydrostatic pressure on the survival of microorganisms. In Y. Taniguchi, H. E. Stanley, & H. Ludwig (Eds.), Biological systems under extreme conditions (pp. 239–256). Berlin: Springer.

    Google Scholar 

  • Lund, D. B. (2002). Food engineering for the 21st century. In J. Welti-Chanes, G. V. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st century. Food Preservation Technology Series, Chapter 44 (pp. 3–14). Boca Raton, FL, USA: CRC Press LLC.

    Google Scholar 

  • Luscher, C., Schluter, O., & Knorr, D. (2005). High pressure-low temperature processing of foods: Impact on cell membranes, texture, color and visual appearance of potato tissue. Innovative Food Science & Emerging Technologies, 6(1), 59–71.

    Google Scholar 

  • Ma, H. J., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68(3), 347–355.

    Google Scholar 

  • Manas, P., & Pagan, R. (2005). Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, 98(6), 1387–1399.

    CAS  Google Scholar 

  • Martino, M. N., Otero, L., Sanz, P. D., & Zaritzky, N. E. (1998). Size and location of ice crystals in pork frozen by high-pressure assisted freezing as compared to classical methods. Meat Science, 50(3), 303–313.

    CAS  Google Scholar 

  • Mashmoushy, H., Zhang, Z., & Thomas, C. R. (1998). Micromanipulation measurement of the mechanical properties of baker’s yeast cells. Biotechnology Letters, 12, 925–929.

    CAS  Google Scholar 

  • McClements, J. M. J., Patterson, M. F., & Linton, M. (2001). The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. Journal of Food Protection, 64(4), 514–522.

    CAS  Google Scholar 

  • Mertens, B. A., & Deplace, G. (1993). Engineering aspects of high pressure technology in the food industry. Food Technology, 47, 164–168.

    Google Scholar 

  • Meyer, R., Cooper, K. L., Knorr, D., & Lelieveld, H. L. M. (2000). High pressure sterilisation of foods. Food Technology, 54(11), 67–72.

    Google Scholar 

  • Miles, C. A. (1991). The thermophysical properties of frozen foods. In W. Bald (Eds.), Food freezing: Today and tomorrow (pp. 45–65). London: Springer.

    Google Scholar 

  • Miller, D. S., & Mclean, C. (2006). Packaging for use with high pressure pasteurization. U.S. Patent 20060099306; (11 May 2006).

  • Molina-Garcia, A. D., Otero, L., Martino, M. N., Zaritzky, N. E., Arabas, J., Szczepek, J., et al. (2004). Ice VI freezing of meat: Supercooling and ultrastructural studies. Meat Science, 66(3), 709–718.

    Google Scholar 

  • Mor-Mor, M., & Yuste, J. (2003). High pressure processing applied to cooked sausage manufacture: Physical properties and sensory analysis. Meat Science, 65(3), 1187–1191.

    Google Scholar 

  • Morgan, D., Newman, C. P., Hutchinson, D. N., Walker, A. M., Rowe, B., & Majid, F. (1993). Verotoxin producing Escherichia coli O157:H7 infections associated with the consumption of yogurt. Epidemiology and Infection, 111, 181–187.

    CAS  Google Scholar 

  • Murchie, L. W., Cruz-Romero, M., Kerry, J. P., Linton, M., Patterson, M. F., Smiddy, M., et al. (2005). High pressure processing of shellfish: A review of microbiological and other quality aspects. Innovative Food Science & Emerging Technologies, 6(3), 257–270.

    Google Scholar 

  • Nakagami, T., Shigehisa, T., Ohmori, T., Taji, S., Hase, A., Kimura, T., et al. (1992). Inactivation of herpes viruses by high hydrostatic pressure. Journal of Virological Methods, 38, 255–262.

    CAS  Google Scholar 

  • Nakagami, T., Ohno, H., Shigehisa, T., Otake, T., Mori, H., Kawahata, T., et al. (1996). Inactivation of human immunodeficiency virus by high hydrostatic pressure. Transfusion, 36(5), 475–476.

    CAS  Google Scholar 

  • Needs, E. C., Stenning, R. A., Gill, A. L., Ferragut, V., & Rich, G. T. (2000). High pressure treatment of milk: Effects on casein micelle structure and on enzymic coagulation. Journal of Dairy Research, 67, 31–42.

    CAS  Google Scholar 

  • Nienaber, U., & Shellhammer, T. H. (2001). High-pressure processing of orange juice: Kinetics of pectinmethylesterase inactivation. Journal of Food Science, 66(2), 328–331.

    CAS  Google Scholar 

  • Okazaki, T., Kakugawa, K., Yoneda, T., & Suzuki, K. (2000). Inactivation behaviour of heat-resistant bacterial spores by thermal treatments combined with high hydrostatic pressure. Food Science Technology, 6, 204–207.

    Article  Google Scholar 

  • Oliveira, A. C., Ishimaru, D., Gonçalves, R. B., Smith, T. J., Mason, P., Sá-Carvalho, D., et al. (1999). Low temperature and pressure stability of picornaviruses: Implications for virus uncoating. Biophysical Journal, 76, 1270–1279.

    Article  CAS  Google Scholar 

  • O’Reilly, C. E., O’Connor, P. M., Kelly, A. L., Beresford, T.P., & Murphy, P. M. (2000). Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Applied and Environmental Microbiology, 66, 4890–4896.

    CAS  Google Scholar 

  • O’Reilly, C. E., Kelly, A. L., Murphy, P. M., & Beresford, T. P. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science & Technology, 12(2), 51–59.

    CAS  Google Scholar 

  • O’Reilly, C. E., Murphy, P. M., Kelly, A. L., Guinee, T. P., & Beresford, T. P. (2002). The effect of high pressure treatment on the functional and rheological properties of Mozzarella cheese. Innovative Food Science & Emerging Technologies, 3, 3–9.

    CAS  Google Scholar 

  • Otero, L., Martino, M., Zaritzky, N., Solas, M., & Sanz, P. D. (2000). Preservation of microstructure in peach and mango during high-pressure-shift freezing. Journal of Food Science, 65(3), 466–470.

    CAS  Google Scholar 

  • Otero, L., Molina, A., Ramos, A., & Sanz, P. D. (2002a). A model for a real thermal control in high-pressure treatment of foods. Biotechnology Progress, 18(4), 904–908.

    CAS  Google Scholar 

  • Otero, L., Molina-García, A. D., & Sanz, P. D. (2002b). Some interrelated thermophysical properties of liquid water and ice I: A user-friendly modelling review for high-pressure processing. Critical Reviews in Food Science and Nutrition, 44(2), 339–352.

    Google Scholar 

  • Otero, L., Ousegui, A., Guignon, B., LeBail, A., & Sanz, P. D. (2006). Evaluation of the thermophysical properties of tylose gel under pressure in the phase change domain. Food Hydrocoll, 20(4), 449–460.

    CAS  Google Scholar 

  • Otero, L., Ramos, A. M., de Elvira, C., & Sanz, P. D. (2007a). A model to design high-pressure processes towards an uniform temperature distribution. Journal of Food Engineering, 78(4), 1463–1470.

    Google Scholar 

  • Otero, L., Ousegui, A., Urrutia-Benet, G., de Elvira, C., Havet, M., LeBail, A., et al. (2007b). Modelling industrial scale high-pressure-low-temperature processes. Journal of Food Engineering, 83(2), 136–141.

    CAS  Google Scholar 

  • Ozmutlu, O., Hartmann, C., & Delgado, A. (2006). Momentum and energy transfer during phase change of water under high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 7(3), 161–168.

    CAS  Google Scholar 

  • Palou, B., Lopez-Malo, A., & Welti-Chanes, J. (2002). Innovative fruit preservation methods using high pressure. In J. Welti-Chanes, G. V. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st Century. Food Preservation Technology Series, Chapter 44 (pp. 3–14). Boca Raton, FL, USA: CRC Press LLC.

    Google Scholar 

  • Patazca, E., Koutchma, T., & Balasubramaniam, V. M. (2007). Quasi-adiabatic temperature increase during high pressure processing of selected foods. Journal of Food Engineering, 80(1), 199–205.

    Google Scholar 

  • Patterson, M., & Kilpatrick, D. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. Journal of Food Protection, 61(4), 432–436.

    CAS  Google Scholar 

  • Pauling, L. (1964). College chemistry: An introductory textbook of general chemistry. San Francisco, CA: Freeman and Company.

    Google Scholar 

  • Pehl, M., Werner, F., & Delgado, A. (2000). First visualization of temperature fields in liquids at high pressure. Experiments in Fluids, 29, 302–304.

    Google Scholar 

  • Perrier-Cornet, J. M., Maréchal, P. A., & Gervais, P. (1995). A new design intended to relate high-pressure treatment to yeast cell mass transfer. Journal of Biotechnology, 41, 49–58.

    CAS  Google Scholar 

  • Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2003). Comparitive shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60, 21–29.

    Google Scholar 

  • Polydera, A. C., Galanou, E., Stoforos, N. G., & Taoukis, P. S. (2004). Inactivation kinetics of pectin methylesterase of Greek navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering, 62(3), 291–298.

    Google Scholar 

  • Pontes, L., Cordeiro, Y., Giongo, V., Villas-Boas, M., Barreto, A., Araujo, J. R., et al. (2001). Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4. Journal of Molecular Biology, 307(5), 1171–1179.

    CAS  Google Scholar 

  • Préstamo, G., & Arroyo, G. (1998). High hydrostatic pressure effect on vegetable structure. Journal of Food Science, 63, 878–881.

    Google Scholar 

  • Rademacher, B., Werner, F., & Pehl, M. (2002). Effect of the pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. Innovative Food Science & Emerging Technologies, 3, 13–24.

    Google Scholar 

  • Ramirez-Suarez, J., & Morrissey, M. (2006). Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies, 7(1–2), 19–27.

    CAS  Google Scholar 

  • Rao, M. A., Ooley, H. J., & Vitali, A. A. (1986). Flow properties of concentrated juices at low temperatures. Food Technology, 38, 113–119.

    Google Scholar 

  • Rasanayagam, V., Balasubramaniam, V. M., Ting, E., Sizer, C. E., Bush, C., & Anderson, C. (2003). Compression heating of selected fatty food materials during high-pressure processing. Journal of Food Science, 68(1), 254–259.

    CAS  Google Scholar 

  • Raso, J., & Barbosa-Canovas, G. V. (2003). Non-thermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265–285.

    Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69–112.

    CAS  Google Scholar 

  • Ritz, M., Tholozan, J. L., Federighi, M., & Pilet, M. F. (2002). Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. International Journal of Food Microbiology, 79(1–2), 47–53.

    CAS  Google Scholar 

  • Rodrigo, D., van Loey, A., & Hendrickx, M. E. (2007). Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. Journal of Food Engineering, 79(2), 553–660.

    Google Scholar 

  • Roos, Y. H. (2003). Thermal analysis, state transitions and food quality. Journal of Thermal Analysis and Calorimetry, 71(1), 197–203.

    CAS  Google Scholar 

  • Ross, A. I. V., Griffiths, M. W., Mittal, G. S., & Deeth, H. C. (2003). Combining non-thermal technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89(2–3), 125–138.

    Google Scholar 

  • Rouille, J., LeBail, A., Ramaswamy, H. S., & Leclerc, L. (2002). High pressure thawing of fish and shellfish. Journal of Food Engineering, 53, 83–88.

    Google Scholar 

  • Rubio, B., Martinez, B., Garcia-Cachan, M. D., Rovira, J., & Jaime, I. (2007). Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”. Innovative Food Science & Emerging Technologies, 8(1), 102–110.

    Google Scholar 

  • Sandra, S., Stanford, M. A., & Meunier Goddik, L. (2004). The use of high-pressure processing in the production of Queso Fresco cheese. Journal of Food Science, 69(4), 153–158.

    Google Scholar 

  • Sangsuk, O., & Myoung, J. (2003). Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures. Journal of Food Protection, 66, 599–603.

    Google Scholar 

  • San Martin, M. F., Barbosa-Canovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627–645.

    Google Scholar 

  • San Martin-Gonzalez, M. F., Welti-Chanes, J., & Barbosa-Canovas, G. V. (2006). Cheese manufacture assisted by high pressure. Food Reviews International, 22(3), 275–289.

    Google Scholar 

  • San Martin-Gonzalez, M. F., Rodriguez, J. J., Gurram, S., Clark, S., Swanson, B. G., & Barbosa-Canovas, G. V. (2007). Yield, composition and rheological characteristics of cheddar cheese made with high pressure processed milk. LWT-Food Science Technology, 40(4), 697–705.

    Google Scholar 

  • Saul, A., & Wagner, W. (1989). A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25000 MPa. Journal of Physical and Chemical Reference Data, 18(4), 1537–1564.

    CAS  Google Scholar 

  • Schluter, O. (2003). Impact of high pressure - low temperature processes on cellular materials related to foods. PhD thesis, Berlin University of Technology.

  • Schluter, O., Urrutia-Benet, G. U., Heinz, V., & Knorr, D. (2004). Metastable states of water and ice during pressure-supported freezing of potato tissue. Biotechnology Progress, 20(3), 799–810.

    CAS  Google Scholar 

  • Schreck, C., Layh-Schmidt, G., & Ludwig, H. (1999). Inactivation of Mycoplasma pneumoniae by high hydrostatic pressure. Pharmaceutical Industry, 61(8), 759–762.

    Google Scholar 

  • Schubring, R., Meyer, C., Schluter, O., Boguslawski, S., & Knorr, D. (2003). Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Science & Emerging Technologies, 4(3), 257–267.

    Google Scholar 

  • Seeton, C. J. (2006). Viscosity–temperature correlation for liquids. Tribology Letters, 22(1), 67–78.

    CAS  Google Scholar 

  • Serra, X., Grebol, N., Guardia, M. D., Guerrero, L., Gou, P., Masoliver, P., et al. (2007). High pressure applied to frozen ham at different process stages. 2. Effect on the sensory attributes and on the colour characteristics of dry-cured ham. Meat Science, 75(1), 21–28.

    Google Scholar 

  • Shen, T., Urrutia-Benet, G., Brul, S., & Knorr, D. (2005). Influence of high-pressure-low-temperature treatment on the inactivation of Bacillus subtilis cells. Innovative Food Science & Emerging Technologies, 6(3), 271–278.

    Google Scholar 

  • Shimada, S., Andou, M., Naito, N., Yamada, N., Osumi, M., & Hayashi, R. (1993). Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 40, 23–131.

    Google Scholar 

  • Slade, L., & Levine, H. (1991). Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, (30), 115.

  • Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, 9, 152–158.

    CAS  Google Scholar 

  • Smith, A. E., Moxham, K. E., & Middelberg, A. P. J. (1998). On uniquely determining cell-wall material properties with the compression experiment. Chemical Engineering Science, 53, 3913–3922.

    CAS  Google Scholar 

  • Smith, A. E., Zhang, Z., & Thomas, C. R. (2000a). Wall material properties of yeast cells: Part 1. Cell measurements and compression experiments. Chemical Engineering Science, 55(11), 2031–2041.

    CAS  Google Scholar 

  • Smith, A. E., Moxham, K. E., & Middelberg, A. P. J. (2000b). Wall material properties of yeast cells. Part II. Analysis. Chemical Engineering Science, 55(11), 2043–2053.

    CAS  Google Scholar 

  • Spilimbergo, S., Elvassore, N., & Bertucco, A. (2002). Microbial inactivation by high-pressure. Journal of Supercritical Fluids, 22(1), 55–63.

    CAS  Google Scholar 

  • Sun, D.-W. (Ed.) (2005). Emerging technologies for food processing. London, UK: Elsevier.

  • Supavititpatana, T., & Apichartsrangkoon, A. (2007). Combination effects of ultra-high pressure and temperature on the physical and thermal properties of ostrich meat sausage (yor). Meat Science, 76(3), 555–560.

    Google Scholar 

  • Taylor, D. M. (1999). Inactivation of prions by physical and chemical means. Journal of Hospital Infection, 43(Suppl), S69–S76.

    Google Scholar 

  • Thiebaud, M., Dumay, E., & Cheftel, J. C. (2002). Pressure-shift freezing of o/w emulsions: Influence of fructose and sodium alginate on undercooling, nucleation, freezing kinetics and ice crystal size distribution. Food Hydrocolloids, 16, 527–545.

    CAS  Google Scholar 

  • Thomas. C. R., & Zhang, Z. (1998). The effect of hydrodynamics on biological materials. In E. Galindo, & O. T. Ramírez (Eds.), Advances in bioprocess engineering II (pp. 137–170). London: Kluwer.

    Google Scholar 

  • Ting, E. Y., & Anderson, C. (2006). Systems and methods to slowly reduce the pressure in a pressure chamber over time. U.S. Patent 2006272709; (7 Dec 2006).

  • Ting, E. Y., & Lonneborg, N.-G. (2002). Method and apparatus for high pressure treatment of substances under controlled temperature conditions. U.S. Patent 20020192109; (19 Dec 2002).

  • Ting, E. Y., & Marshall, R. G. (2002). Production Issues Related to UHP Food. In J. Welti-Chanes, G. V. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st century. Food preservation technology series, Chapter 44 (pp. 727–738). Boca Raton, FL, USA: CRC Press LLC.

    Google Scholar 

  • Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423.

    CAS  Google Scholar 

  • Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1–2), 95–112.

    Google Scholar 

  • Trejo-Ayara, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., et al. (2007). Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of Food Engineering, 80(3), 873–884.

    Google Scholar 

  • Upmann, M., Paulsen, P., James, C., & Smulders, F. J. M. (2000). Microbiology of refrigerated meat. Fleischwirtschaft, 80, 90–97.

    Google Scholar 

  • Urrutia-Benet, G. (2005). High-pressure-low-temperature processing of foods: Impact of metastable phases of process and quality parameters. PhD thesis, Berlin University of Technology.

  • Urrutia-Benet, G., Schlüter, O., & Knorr, D. (2004). High pressure-low temperature processing. Suggested definitions and terminology. Innovative Food Science & Emerging Technologies, 5(4), 413–427.

    CAS  Google Scholar 

  • Urrutia-Benet, G., Chapleau, N., Lille, M., LeBail, A., Autio, K., & Knorr, D. (2006). Quality related aspects of high pressure low temperature processed whole potatoes. Innovative Food Science & Emerging Technologies, 7(1–2), 32–39.

    Google Scholar 

  • Urrutia-Benet, G., Balogh, T., Schneider, J., & Knorr, D. (2007). Metastable phases during high-pressure-low-temperature processing of potatoes and their impact on quality-related parameters. Journal of Food Engineering, 78(2), 375–389.

    Google Scholar 

  • Van Buggenhout, S., Messagie, I., Van Loey, A., & Hendrickx, M. E. (2005). Influence of low-temperature blanching combined with high-pressure shift freezing on the texture of frozen carrots. Journal of Food Science, 70(4), S304–S308.

    Article  Google Scholar 

  • Van Buggenhout, S., Messagie, I., Maes, V., Duvetter, T., Van Loey, A., & Hendrickx, M. E. (2006a). Minimizing texture loss of frozen strawberries: Effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. European Food Research and Technology, 223(3), 395–404.

    CAS  Google Scholar 

  • Van Buggenhout, S., Lille, M., Messagie, I., Van Loey, A., Autio, K., & Hendrickx, M. (2006b). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5–6), 543–553.

    CAS  Google Scholar 

  • Van den Berg, R. W., Hoogland, H., Lelieveld, H. L. M., & van Schepdael, L. (2001). High pressure equipment for food processing applications. In M. E. Hendrickx, & D. Knorr (Eds.), Ultra high pressure treatment of food, Chapter 11 (pp. 297–312). London, UK: Kluwer Academia.

    Google Scholar 

  • Van Loey, A., Ooms, V., Weemaes, C., Van den Broeck, I., Ludikhuyze, L., Indrawati, et al. (1998). Thermal and pressure-temperature degradation of chlorophyll in broccoli (Brassica oleracea L italica) juice: A kinetic study. Journal of Agricultural and Food Chemistry, 46(12), 5289–5294.

    Google Scholar 

  • Van Opstal, I., Bagamboula, C. F., Vanmuysen, S. C. M., Wuytack, E. Y., & Michiels, C. W. (2004). Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology, 92, 227–234.

    Google Scholar 

  • Villarreal-Alba, E. G., Contreras-Esquivel, J. C., Aguilar-Gonzalez, C. N., & Reyes-Vega, M. L. (2004). Pectinesterase activity and the texture of Jalapeno pepper. European Food Research and Technology, 218(2), 164–166.

    CAS  Google Scholar 

  • Vitali, A. A., & Rao, M. A. (1984). Flow properties of low pulp concentrated orange juice - serum viscosity and effect of pulp content. Journal of Food Science, 49(3), 876–881.

    Google Scholar 

  • Watson, J. T. R., Basu, R. S., & Sengers, J. V. (1980). An improved representative equation for the dynamic viscosity of water substance. Journal of Physical and Chemical Reference Data, 9, 1255–1290.

    Article  CAS  Google Scholar 

  • Weagent, S. D., Bryant, J. L., & Bark, D. H. (1994). Survival of E. coli (O157:H7) in mayonnaise based sauces at room and refrigerated temperatures. Journal of Food Protection, 57, 629–631.

    Google Scholar 

  • Welti-Chanes, J., Lopez-Malo, A., Palou, E., Bermudez, D., Guerrero-Beltran, J. A., & Barbosa-Canovas, G. V. (2005). Fundamentals and applications of high pressure processing to foods. In G. V. Barbosa-Canovas, M. S. Tapia, & P. M. Cano (Eds.), Novel food processing technologies, Chapter 8 (pp. 157–181). Boca Raton, FL, USA: CRC Press LLC.

    Google Scholar 

  • Wilkinson, N., Kurdziel, A. S., Langton, S., Needs, E., & Cook, N. (2001). Resistance of poliovirus to inactivation by hydrostatic pressures. Innovative Food Science & Emerging Technologies, 2, 95–98.

    Google Scholar 

  • Yuste, J., Mor-Mur, M., Capellas, M., & Pla, R. (1999). Pressure vs. heat-induced bacterial stress in cooked poultry sausages: A preliminary study. Letters in Applied Microbiology, 294, 233–237.

    CAS  Google Scholar 

  • Yuste, J., Capellas, M., Pla, R., Fung, D. Y. C., & Mor-Mor, M. (2001). High pressure processing for food safety and preservation: A review. Journal of Rapid Methods and Automation in Microbiology, 91, 1–10.

    Google Scholar 

  • Zhao, Y., Flores, R. A., & Olson, D. (1998). High hydrostatic pressure effects on rapid thawing of frozen beef. Journal of Food Science, 632, 272–275.

    Article  CAS  Google Scholar 

  • Zhu, S. M., LeBail, A., Chapleau, N., Ramaswamy, H. S., & de Lamballerie-Anton, M. (2004) Pressure shift freezing of pork muscle: Effect on color, drip loss, texture, and protein stability. Biotechnology Progress, 203, 939–945.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wen Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, T., Sun, DW. Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food Bioprocess Technol 1, 2–34 (2008). https://doi.org/10.1007/s11947-007-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0007-0

Keywords

Navigation