Skip to main content

Advertisement

Log in

Functional imaging of pain perception

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The application of functional imaging techniques has revolutionized the field of human pain physiology and has elaborated the understanding of mechanisms involved in pain processing at the cortical and subcortical levels. With these insights, new therapeutic interventions are being developed in the treatment of acute and chronic pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Melzac R, Casey KL: Sensory, motivational and central control determinantsof pain: a new conceptual model. In The Skin Senses. Edited by Kenshalo DR. Springfield, IL: Thomas. 1968:423–443.

    Google Scholar 

  2. Tracey I, Becerra L, Change I, et al.: Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci Lett 2000, 288:159–162. A positron emission tomography study of normal volunteers demonstrating the common cortical areas of pain matrix activated irrespective of painful cold or heat stimulus.

    Article  PubMed  CAS  Google Scholar 

  3. Casey KL, Minoshima S, Morrow TJ, Koeppe RA: Comparison of human cerebral activation pattern during cutaneous warmth heat pain, and deep cold pain. J Neurophysiol 1996, 76:571–581.

    PubMed  CAS  Google Scholar 

  4. Davis KD, Kwan CL, Crawley AP, Mikulis DJ: Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 1998, 80:1533–1546.

    PubMed  CAS  Google Scholar 

  5. Witting N, Kupers RC, Svensson P, et al.: Experimental brushevoked allodynia activates posterior parietal cortex. Neurology 2001, 57:1817–1824. A positron emission tomography study of normal volunteers showing brain areas involved in the processing of coexisting experimental ongoing pain and brush-evoked allodynia.

    PubMed  CAS  Google Scholar 

  6. Foltz EL, Lowell EW: Pain "relief" by frontal cingulomotomy. J Neurosurg 1962, 19:89–100.

    Article  PubMed  CAS  Google Scholar 

  7. Wong ET, Gunes S, Gaughan E, et al.: Palliation of intractable cancer pain by MRI guided cingulotomy. Clin J Pain 1997, 13:260–263.

    Article  PubMed  CAS  Google Scholar 

  8. Pillay PK, Hassenbusch SJ: Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg 1992, 59:33–38.

    Article  PubMed  CAS  Google Scholar 

  9. Ploner M, Freund HJ, Schnitzler A: Pain affect without pain sensation in a patient with a postcentral lesion. Pain 1999, 81:211–214. A positron emission tomography study demonstrating dissociation of affective and discriminative components of pain in a patient with stroke.

    Article  PubMed  CAS  Google Scholar 

  10. Hofbauer RK, Rainville P, Duncan GH, Bushnell MC: Cortical representation of the sensory dimension of pain. J Neurophysiol 2001, 86:402–411. A positron emission tomography study of normal volunteers demonstrating the cortical areas involved in sensory-discriminative processing of pain under hypnosis.

    PubMed  CAS  Google Scholar 

  11. Rainville P, Duncan GH, Price DD, et al.: Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997, 277:968–971.

    Article  PubMed  CAS  Google Scholar 

  12. Fulbright RK, Troche CJ, Skudlarski P, et al.: Functional MR imaging of regional brain activation associated with the affective experience of pain. Am J Roentgenol 2001, 177:1205–1210.

    CAS  Google Scholar 

  13. Bush G, Luu P, Posner MI: Cognitive and emotional influences in anterior cingulate cortex. Trends Cognit Sci 2000, 4:215–222. A review of functional imaging studies that provides an insight into the functional neuroanatomy of cingulate cortex.

    Article  Google Scholar 

  14. Drevets WC, Raichle ME: Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cognit Emot 1998, 12:353–385.

    Article  Google Scholar 

  15. Whalen PJ, Bush G, McNally RJ, et al.: The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol Psychiatry 1998, 44:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  16. Miron D, Duncan GH, Bushnell MC: Effects of attention on the intensity and unpleasantness of thermal pain. Pain 1989, 39:345–352.

    Article  PubMed  CAS  Google Scholar 

  17. Porro CA, Baraldi P, Pagnoni G, et al.: Does anticipation of pain affect cortical nociceptive systems? J Neurosci 2002, 22:3206–3214. A positron emission tomography study of normal volunteers showing the influence of anticipation of pain on the perception of subsequent painful stimuli.

    PubMed  CAS  Google Scholar 

  18. Derbyshire SWG, Jones AKP: Cerebral response to pain in two depressed patients. Depression Anxiety 1998, 7:87–88.

    Article  CAS  Google Scholar 

  19. Bantick SJ, Wise RG, Ploghaus A, et al.: Imaging how attention modulates pain in humans using functional MRI. Brain 2002, 125:310–319. A functional magnetic resonance imaging study of normal volunteers that demonstrates underlying mechanisms of reduced pain perception on distracting from pain stimulus.

    Article  PubMed  Google Scholar 

  20. Tracey I, Ploghaus A, Gati JS, et al.: Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002, 22:2748–2752.

    PubMed  CAS  Google Scholar 

  21. Ploghaus A, Tracey I: Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 2001, 21:9896–9903.

    PubMed  CAS  Google Scholar 

  22. Becerra L, Breiter HC, Wise R, et al.: Reward circuitry activation by noxious thermal stimuli. Neuron 2001, 32:927–946. A functional magnetic resonance imaging study of normal volunteers that shows that a painful stimulus results in changes in pain matrix and cerebral reward areas.

    Article  PubMed  CAS  Google Scholar 

  23. Apkarian AV, Krauss BR, Fredrickson BE, Szeverenyi NM: Imaging the pain of low back pain: functional magnetic resonance imaging in combination with monitoring subjective pain perception allows the study of clinical pain states. Neurosci Lett 2001, 299:57–60.

    Article  PubMed  CAS  Google Scholar 

  24. Coghill RC, Gilron I, Michael J, Iadarola MJ: Hemispheric lateralization of somatosensory processing. J Neurophysiol 2001, 85:2602–2612. This study suggests a right hemispheric dominance for pain responses irrespective of the side of stimulation.

    PubMed  CAS  Google Scholar 

  25. Olausson H, Marchand S, Bittar RG, et al.: Central pain in a hemispherectomized patient. Eur J Pain 2001, 5:209–217.

    Article  PubMed  CAS  Google Scholar 

  26. Hugdahl K, Carlsson G, Eichele T: Common pathways in mental imagery and pain perception: an fMRI study of a subject with an amputated arm. Scand J Psychol 2001, 42:269–275.

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh JC, Tu CH, Chen FP, et al.: Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett 2001, 307:105–108. The first demonstration of hypothalamic activation in acupuncture.

    Article  PubMed  CAS  Google Scholar 

  28. Biella G, Sotgiu ML, Pellegata G, et al.: Acupuncture produces central activations in pain regions. Neuroimage 2001, 14:60–66. This is the first demonstration of lasting effects of modulation of the pain matrix after acupuncture pain has subsided.

    Article  PubMed  CAS  Google Scholar 

  29. Gage HD, Gage JC, Tobin JR, et al.: Morphine-induced spinal cholinergic activation: in vivo imaging with positron emission tomography. Pain 2001, 91:139–145. This is the first validation of effects of morphine on spinal cholinergic activity using positron emission tomography.

    Article  PubMed  CAS  Google Scholar 

  30. Jones AK, Kitchen ND, Watabe H, et al.: Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 1999, 19:803–808. A positron emission tomography study of [11C] diprenorphine binding to cerebral mu, kappa, and delta subsites in patients with trigeminal neuralgia before and after surgical intervention.

    Article  PubMed  CAS  Google Scholar 

  31. Zubieta JK, Smith YR, Buellar JA, et al.: Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001, 293:311–315. This is the first demonstration of changes in in vivo opioid receptor binding during acute pain.

    Article  PubMed  CAS  Google Scholar 

  32. Jones AK, Qi LY, Fujirawa T, et al.: In vivo distribution of opioid receptors in man in relation to the cortical projections to medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 1991, 126:25–28. A positron emission tomography study demonstrating opioid system in humans and its relation to functional neuroanatomy of pain.

    Article  PubMed  CAS  Google Scholar 

  33. Malisza KL, Docherty JC: Capsaicin as a source for painful stimulation in functional MRI. J Magn Reson Imaging 2002, 14:341–347. A functional magnetic resonance imaging study of anesthetized rats that reports capsaicin-induced pain response in the anterior cingulate, frontal cortex, and sensory motor cortex, and the effects of opioid therapy.

    Article  Google Scholar 

  34. Benedetti F, Amanzio M: The neurobiology of placebo analgesia: from endogenous opioids to cholecystokinins. Prog Neurobiol 1997, 52:109–125.

    Article  PubMed  CAS  Google Scholar 

  35. Petrovic P, Kalso E, Petersson KM, Ingvar M: Placebo and opioid analgesia: imaging a shared neuronal network. Science 2002, 295:1737–1740.

    Article  PubMed  CAS  Google Scholar 

  36. Knight YE, Goadsby PJ: The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 2001, 106:793–800.

    Article  PubMed  CAS  Google Scholar 

  37. Goadsby PJ: Neuroimaging in headache. Microsc Res Tech 2002, 53:179–187.

    Article  Google Scholar 

  38. Jaaskelainen SK, Rinne JO, Forssell H, et al.: Role of the dopaminergic system in chronic pain: a fluorodopa-PET study. Pain 2001, 90:257–260.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.K.P., Kulkarni, B. & Derbyshire, S.W.G. Functional imaging of pain perception. Curr Rheumatol Rep 4, 329–333 (2002). https://doi.org/10.1007/s11926-002-0042-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0042-9

Keywords

Navigation