Skip to main content

Advertisement

Log in

Pathophysiology of migraine headache

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

The underlying mechanism of migraine and pain has been unraveled recently with the advent of neuroimaging. In this article mechanism of migraine aura and the pain of migraine are discussed. In addition, interictal studies demonstrating hyperexcitability in migraine are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wolff HG: Headache and Other Head Pain, jedn 2. New York: Oxford University Press; 1963.

    Google Scholar 

  2. Lashley KS: Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychol 1941, 46:331–339.

    Google Scholar 

  3. Leão AAP: Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944, 8:379–390.

    Google Scholar 

  4. Welch KMA, D’ Andrea, Tepley N, et al.: The concept of migraine as a state of central neuronal hyperexcitabiliy. Neurol Clin 1990, 8:817–828.

    PubMed  CAS  Google Scholar 

  5. Ophoff RA, Terwindt GM, Vergouwe MN, et al.: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca+2 channel gene CACNL1A4. Cell 1996, 87:543–552.

    Article  PubMed  CAS  Google Scholar 

  6. Cao Y, Welch KMA, Aurora SK, Vikingstad EM: Functional MRI-BOLD of visually triggered headache and visual change in migraine sufferers. Arch Neurol 1999, 56:548–554. Headache and visual change were triggered by visual stress, and early events in migraine were studied with BOLD effect functional MRI. Similar changes were seen in both migraine with and without aura.

    Article  PubMed  CAS  Google Scholar 

  7. Gardner-Medwin AR, Bruggen NV, Williams SR, Ahier RG: Magnetic resonance imaging of propagating waves of spreading depression in the anaesthetised rat. J Cereb Blood Flow Metab 1994, 14:7–11.

    PubMed  CAS  Google Scholar 

  8. Sanchez del Rio M, Bakker D, Wu O, et al.: Perfusion weighted imaging during migraine spontaneous visual aura and headache. Cephalalgia 1999, 19:704–707. Using PWI, spontaneous attacks of migraine were studied. Some subjects were studied several times. This report confirmed previous findings of perfusion changes but not diffusion changes, which support the theory that migraine is not due to ischemia.

    Article  Google Scholar 

  9. Bowyer SM, Okada YC, Papuashvili N, et al.: Analysis of magnetoencephalograhic signals of spreading cortical depression with propagation constrained to a rectangular cortical strip: I. Lissencephalic rabbit model. Brain Res 1999, 843:71–78.

    Article  PubMed  CAS  Google Scholar 

  10. Barkley GL, Tepley N, Nagel-Leiby S, et al.: Magnetoencephalograhic studies of migraine. Headache 1990, 30:428–434.

    Article  PubMed  CAS  Google Scholar 

  11. Raskin NH, Hosobuchi Y, Lamb S: Headache may arise from perturbation of the brain. Headache 1987, 27:416–420.

    Article  PubMed  CAS  Google Scholar 

  12. Moskowitz MA: The neurobiology of vascular head pain. Ann Neurol 1984, 15:157–168.

    Article  Google Scholar 

  13. Goadsby PJ, Gundlach AL: Localization of 3H-dihydroergotamine-binding sites in cat central nervous system: relevance to migraine. Ann Neurol 1991, 29:91–94.

    Article  PubMed  CAS  Google Scholar 

  14. Longmore J, Shaw D, Smith D, et al.: Differential distribution of 5-HT 1D and 5-HT 1B immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new anti-migraine drugs. Cephalalagia 1997, 17:835–842.

    Google Scholar 

  15. Weiller C, May A, Limmroth V, et al.: Brainstem activation in spontaneous human migraine attacks. Nat Med 1995, 1:658–660.

    Article  PubMed  CAS  Google Scholar 

  16. Welch KMA, Cao Y, Aurora SK, et al.: MRI of the occipital cortex, red nucleus, and substantia nigra during visual aura of migraine. Neurology 1998, 51:1465–1469.

    PubMed  CAS  Google Scholar 

  17. Cao Y, Aurora SK, Vikingstad EM, et al.: Functional MRI of the red nucleus and occipital cortex during visual stimulation of subjects with migraine. Cepahalalgia 1999, 19:462.

    Google Scholar 

  18. Iadarola MJ, Berman KF, Zeffiro TA, et al.: Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 1998, 121:931–947.

    Article  PubMed  Google Scholar 

  19. Gronseth GS, Greenberg MK: The utility of the electroencephalogram in the evaluation of patients presenting with headache: a review of the literature. Neurology 1995, 45:1263–1267.

    PubMed  CAS  Google Scholar 

  20. Golla FL, Winter AL: Analysis of cerebral responses to flicker in patients complaining of episodic headache. Electroencephalopgr Clin Neurophysiol 1982, 53:270–276.

    Article  Google Scholar 

  21. Simon RH, Zimmerman AW, Tasman A, Hale MS: Spectral analysis of photic stimulation in migraine. Electroencephalogr Clin Neurophysiol 1982, 53:270–276.

    Article  PubMed  CAS  Google Scholar 

  22. Pechadre JC, Gibert J: Demonstration, by the cartographic test, of an unusual reaction to intermittent light stimulation in patients with migraine. Encephale 1987, 13:245–247.

    PubMed  CAS  Google Scholar 

  23. Nyrke T, Kangasniemi P, Lang AH: Difference of steady-state visual evoked potential in classic and common migraine. Electroencephalopgr Clin Neurophysiol 1989, 73:284–294.

    Google Scholar 

  24. Nyrke T, Kangasniemi P, Lang AH: Steady-state visual evoked potentials during migraine prophylaxis by propranolol and femoxetine. Acta Neurol Scand 1984, 69:9–14.

    Article  PubMed  CAS  Google Scholar 

  25. Schoenen J, Wang, W, Albert A, Delwaide PJ: Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol 1995, 2:115–122.

    Article  Google Scholar 

  26. Afra J, Cecchini AP, DePasqua V, et al.: Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 1998, 121(Pt 2):233–241.

    Article  PubMed  Google Scholar 

  27. Wang W, Timsit-Berthier M, Schoenen J: Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology 1996, 46:1404–1409.

    PubMed  CAS  Google Scholar 

  28. Cecchini AP, Afra J, Schoenen J: Intensity dependence of the cortical auditory evoked potentials as a surrogate marker of central nervous system serotonin transmission in man: demonstration of a central effect for the 5-HT1B/1D agonist zomitriptan (311C90, Zomig). Cephalalgia 1997, 17:1–18.

    Article  Google Scholar 

  29. Barker AT, Freeston IL, Jalinous R, Jarratt JA: Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 1987, 20:100–109.

    Article  PubMed  CAS  Google Scholar 

  30. Barker AT, Jalinous R, Freeston IL: Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1:1106–1107.

    Article  PubMed  CAS  Google Scholar 

  31. Maertens de Noordhout AL, Pepin JL, Schoenen J, Delwaide PJ: Percutaneous magnetic stimulation of the motor cortex in migraine. Electroencephalogr Clin Neurophysiol 1992, 85:110–115.

    Article  PubMed  CAS  Google Scholar 

  32. Bettucci D, Cantello R, Gianelli M, et al.: Menstrual migraine without aura: cortical excitability to magnetic stimulation. Headache 1992, 32:345–347.

    Article  PubMed  CAS  Google Scholar 

  33. van der Kamp W, Maassenvandenbrink A, Ferrari MD, vanDijk JG: Interictal cortical hyperexcitability in migraine patients demonstrated with transcranial magnetic stimulation. J Neurol Sci 1996, 139:106–110.

    Article  PubMed  Google Scholar 

  34. van der Kamp W, Maassenvandenbrink A, Ferrari MD, vanDijk JG: Interictal cortical excitability to magnetic stimulation in familial hemiplegic migraine. Neurology 1997, 48:1462–1464.

    PubMed  Google Scholar 

  35. Werhahn KJ, Förderreuther S, Straube A: Effects of serotonin 1B/1D receptor agonist zolmitriptan on motor cortical excitability in humans. Neurology 1998, 51:896–898.

    PubMed  CAS  Google Scholar 

  36. Afra J, Mascia A, Gérard P, et al.: Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol 1998, 44:209–215.

    Article  PubMed  CAS  Google Scholar 

  37. Aurora SK, Al-Sayed F, Welch KMA: The cortical silent period is shortened in migraine with aura. Cephalalgia 1999, 19:708–712.

    Article  PubMed  CAS  Google Scholar 

  38. Aurora SK, Al-Sayed F, Welch KMA: The threshold for magnetophoshenes is lower in migraine. Neurology 1999, 52:A472.

    Google Scholar 

  39. Aurora SK, Welch KMA: Phosphene generation in migraine [letter]. Ann Neurol 1999, 45:416.

    Article  PubMed  CAS  Google Scholar 

  40. Aggugia M, Zibetti M, Febbraro A, Mutani R: Transcranial magnetic stimulation in migraine with aura: further evidence of occipital cortex hyperexcitability [abstract]. Cephalalgia 1999, 19:465.

    Google Scholar 

  41. Aurora SK, Cao Y, Bowyer SM, Welch KMA: The occipital cortex is hyperexcitable in migraine; evidence from TMS, fMRI and MEG studies (Wolff Award 1999). Headache 1999, 39:469–476. Includes the study of patients with three noninvasive techniques. The patients were found to have hyperexcitability in the interictal period and a greater propensity to visually triggered migraine.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurora, S.K. Pathophysiology of migraine headache. Current Science Inc 5, 179–182 (2001). https://doi.org/10.1007/s11916-001-0086-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-001-0086-y

Keywords

Navigation