Skip to main content

Advertisement

Log in

Bone biopsy in patients with osteoporosis

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Although rarely used to diagnose and manage patients with osteoporosis, bone biopsies are performed to establish bone quality, including degree of mineralization and microarchitecture; to assess bone turnover and bone loss mechanisms; and to analyze treatment effects on bone structure and bone turnover. Bone biopsies are also the only method to diagnose mineralization defect or frank osteomalacia. Due to the availability of antiresorptive agents and anabolic drugs, determining bone turnover and bone-loss mechanisms is critical to appropriate treatment regimen selection. Bone biopsies establish the safety and efficacy of new therapeutic modalities. Further, new techniques such as molecular morphometry (in situ hybridization and immunohistochemistry) and analysis of bone content and crystal perfection have been applied to undecalcified bone and elucidated pathogenetic mechanisms or abnormalities in bone microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Meunier P, Courpron P, Edouard C, et al.: Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab 1973, 2:239–256.

    Article  PubMed  CAS  Google Scholar 

  2. Dorr LD, Arnala I, Faugere MC, et al.: Five-year postoperative results of cemented femoral arthroplasty in patients with systemic bone disease. Clin Orthop Relat Res 1990, 259:114–121.

    PubMed  Google Scholar 

  3. Dorr LD, Faugere MC, Mackel AM, et al.: Structural and cellular assessment of bone quality of proximal femur. Bone 1993, 14:231–242.

    Article  PubMed  CAS  Google Scholar 

  4. Malluche HH, Meyer W, Sherman D, et al.: Quantitative bone histology in 84 normal American subjects. Micromorphometric analysis and evaluation of variance in iliac bone. Calcif Tissue Int 1982, 34:449–455.

    Article  PubMed  CAS  Google Scholar 

  5. Malluche HH, Faugere MC: Atlas of Mineralized Bone Histology. New York: Karger; 1986.

    Google Scholar 

  6. Duncan H, Rao S, Parfitt AM: Complications of bone biopsy. In Bone Histomorphometry. Edited by Jee W, Parfitt AM. Paris: Societe Nouvelles de Publications Medicales et Dentaires; 1981:483–486

    Google Scholar 

  7. Johnson KA, Kelly PJ, Jowsey J: Percutaneous biopsy of the iliac crest. Clin Orthop Relat Res 1977, 123:34–36.

    PubMed  Google Scholar 

  8. Parfitt A: Stereologic basis of bone histomorphometry; theory of quantitative microscopy and reconstruction of the third dimension. In Bone Histomorphometry: Techniques and Interpretation. Edited by Recker RR. Boca Raton, FL: CRC Press; 1983:53–87.

    Google Scholar 

  9. Meunier P: Bone histomorphometry. In Osteoporosis: Etiology, Diagnosis, and Management, edn 2. Edited by Riggs BL, Melton LJ III. Philadelphia: Lippincott-Raven; 1995:299–318.

    Google Scholar 

  10. Faugere MC, Friedler RM, Fanti P, et al.: Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study employing sequential biopsies. J Bone Miner Res 1990, 5:263–272.

    PubMed  CAS  Google Scholar 

  11. Malluche HH, Faugere MC, Rush M, et al.: Osteoblastic insufficiency is responsible for maintenance of osteopenia after loss of ovarian function in experimental beagle dogs. Endocrinology 1986, 119:2649–2654.

    Article  PubMed  CAS  Google Scholar 

  12. Monier-Faugere MC, Friedler RM, Bauss F, et al.: A new bisphosphonate, BM 21.0955, prevents bone loss associated with cessation of ovarian function in experimental dogs. J Bone Miner Res 1993, 8:1345–1355.

    PubMed  CAS  Google Scholar 

  13. Lips P, Courpron P, Meunier PJ: Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 1978, 26:13–17.

    Article  PubMed  CAS  Google Scholar 

  14. Recker R, Lappe J, Davies KM, et al.: Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 2004, 19:1628–1633.

    Article  PubMed  Google Scholar 

  15. Donovan MA, Dempster D, Zhou H, et al.: Low bone formation in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 2005, 90:3331–3336.

    Article  PubMed  CAS  Google Scholar 

  16. Bone HG, Greenspan SL, McKeever C, et al.: Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab 2000, 85:720–726.

    Article  PubMed  CAS  Google Scholar 

  17. McClung M, Clemmesen B, Daifotis A, et al.: Alendronate prevents postmenopausal bone loss in women without osteoporosis. A double-blind, randomized, controlled trial. Alendronate Osteoporosis Prevention Study Group. Ann Intern Med 1998, 128:253–261.

    PubMed  CAS  Google Scholar 

  18. Recker RR, Weinstein RS, Chesnut CH 3rd, et al.: Histomorphometric evaluation of daily and intermittent oral ibandronate in women with postmenopausal osteoporosis: results from the BONE study. Osteoporos Int 2004, 15:231–237.

    Article  PubMed  CAS  Google Scholar 

  19. Arlot M, Meunier PJ, Boivin G, et al.: Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res 2005, 20:1244–1253.

    Article  PubMed  CAS  Google Scholar 

  20. Lindsay R, Zhou H, Cosman F, et al.: Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res 2007, 22:495–502.

    Article  PubMed  CAS  Google Scholar 

  21. McCabe JT, Bolender RP: Estimation of tissue mRNAs by in situ hybridization. J Histochem Cytochem 1993, 41:1777–1783.

    PubMed  CAS  Google Scholar 

  22. Ikeda T, Nagai Y, Yamaguchi A, et al.: Age-related reduction in bone matrix protein mRNA expression in rat bone tissues: application of histomorphometry to in situ hybridization. Bone 1995, 16:17–23.

    Article  PubMed  CAS  Google Scholar 

  23. Ikeda T, Nomura S, Yamaguchi A, et al.: In situ hybridization of bone matrix proteins in undecalcified adult rat bone sections. J Histochem Cytochem 1992, 40:1079–1088.

    PubMed  CAS  Google Scholar 

  24. Ikeda T, Yamaguchi A, Yokose S, et al.: Changes in biological activity of bone cells in ovariectomized rats revealed by in situ hybridization. J Bone Miner Res 1996, 11:780–788.

    PubMed  CAS  Google Scholar 

  25. Weinreb M, Shinar D, Rodan GA: Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 1990, 5:831–842.

    Article  PubMed  CAS  Google Scholar 

  26. Davideau JL, Papagerakis P, Hotton D, et al.: In situ investigation of vitamin D receptor, alkaline phosphatase, and osteocalcin gene expression in oro-facial mineralized tissues. Endocrinology 1996, 137:3577–3585.

    Article  PubMed  CAS  Google Scholar 

  27. Mee AP, Hoyland JA, Braidman IP, et al.: Demonstration of vitamin D receptor transcripts in actively resorbing osteoclasts in bone sections. Bone 1996, 18:295–299.

    Article  PubMed  CAS  Google Scholar 

  28. Dodds RA, Merry K, Littlewood A, et al.: Expression of mRNA for IL1 beta, IL6 and TGF beta 1 in developing human bone and cartilage. J Histochem Cytochem 1994, 42:733–744.

    PubMed  CAS  Google Scholar 

  29. Langub MC Jr, Koszewski NJ, Turner HV, et al.: Bone resorption and mRNA expression of IL-6 and IL-6 receptor in patients with renal osteodystrophy. Kidney Int 1996, 50:515–520.

    Article  PubMed  Google Scholar 

  30. Boskey AL, DiCarlo E, Paschalis E, et al.: Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 2005, 16:2031–2038.

    Article  PubMed  CAS  Google Scholar 

  31. Porter D, Faugere M, Pienkowski D, et al.: Gender related differences in bone mineral quality. J Bone Miner Res 2007, In press.

  32. Carter DR, Hayes WC: Bone compressive strength: the influence of density and strain rate. Science 1976, 194:1174–1176.

    Article  PubMed  CAS  Google Scholar 

  33. Wainwright S, Briggs W, Currey J, et al.: Mechanical Design in Organisms. New York: Halsted Press; 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut H. Malluche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malluche, H.H., Mawad, H. & Monier-Faugere, MC. Bone biopsy in patients with osteoporosis. Curr Osteoporos Rep 5, 146–152 (2007). https://doi.org/10.1007/s11914-007-0009-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-007-0009-x

Keywords

Navigation