Skip to main content
Log in

Noninvasive assessment of bone structure

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone fragility is determined by bone mass and trabecular structure. While bone mass can be readily measured as bone density, bone trabecular structure cannot be easily assessed by currently available methods. The realization of the importance of bone structure in determining fracture risk has led to the development of several imaging modalities aimed at evaluating the contribution of bone quality to its biomechanical strength and fragility. High-resolution magnetic resonance imaging and computed tomography have limited spatial resolution and high cost but have a potential to generate true three-dimensional images of trabecular structure in vivo. Bone radiographs subjected to various forms of texture analysis have higher resolution and lower cost but provide only a two-dimensional representation of bone structure. Both two- and threedimensional methods have been shown to predict biomechanical strength in vitro and to differentiate between subjects with and without fractures in vivo. Therefore, all of these methods deserve closer evaluation and also need further technical improvements before they can be considered for use in clinical practice

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Marshall D, Johnell O, Wedel H: Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996, 312:1254–1259.

    PubMed  CAS  Google Scholar 

  2. Ross PD, Davis JW, Vogel JM, Wasnich RD: A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 1990, 46:149–161.

    Article  PubMed  CAS  Google Scholar 

  3. Dempster DW: The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 2000, 15:20–23.

    Article  PubMed  CAS  Google Scholar 

  4. Kleerekoper M, Villaneuava AR, Stanciu J, et al.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985, 37:594–597.

    Article  PubMed  CAS  Google Scholar 

  5. Barger-Lux MJ, Recker RR: Bone microstructure in osteoporosis: transilial biopsy and histomorphometry. Top Magn Reson Imaging 2002, 13(5):297–305.

    Article  PubMed  Google Scholar 

  6. Aaron JE, Shore PA, Shore RC, et al.: Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone 2000, 27:277–282.

    Article  PubMed  CAS  Google Scholar 

  7. Chaffai SF, Peyrin S, Nuzzo R, et al.: Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 2002, 30:229–237.

    Article  PubMed  CAS  Google Scholar 

  8. Hans DP, Dargent-Molina AM, Schott JL, et al.: Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996, 348:511–514.

    Article  PubMed  CAS  Google Scholar 

  9. Brismar TB: MR relaxometry of lumbar spine, hip, and calcaneus in healthy premenopausal women: relationship with dual energy X-ray absorptiometry and quantitative ultrasound. Eur Radiol 2000, 10:1215–1221.

    Article  PubMed  CAS  Google Scholar 

  10. Link TM, Majumdar S, Augat P, et al.: Proximal femur: assessment for osteoporosis with T2* decay characteristics at MR imaging. Radiology 1998, 209:531–536.

    PubMed  CAS  Google Scholar 

  11. Wehrli FW, Hilaire L, Fernandez-Seara M, et al.: Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 2002, 17:2265–2273.

    Article  PubMed  Google Scholar 

  12. Wehrli FW, Hwang SN, Ma J, et al.: Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 1998, 206:347–357.

    PubMed  CAS  Google Scholar 

  13. Majumdar S, Genant HK, Grampp S, et al.: Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 1997, 12:111–118.

    Article  PubMed  CAS  Google Scholar 

  14. Lin JC, Amling M, Newitt DC, et al.: Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 1998, 8:16–24.

    Article  PubMed  CAS  Google Scholar 

  15. Link TM, Majumdar S, Augat P, et al.: In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998, 13:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  16. Chung HW, Wehrli FW, Williams JL, et al.: Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res 1995, 10:803–811.

    PubMed  CAS  Google Scholar 

  17. Chung HW, Wehrli FW, Williams JL, Wehrli SL: Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 1995, 10:1452–1461.

    Article  PubMed  CAS  Google Scholar 

  18. Hipp JA, Jansujwicz A, Simmons CA, Snyder BD: Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 1996, 11:286–297.

    PubMed  CAS  Google Scholar 

  19. Majumdar S, Newitt D, Mathur A, et al.: Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 1996, 6:376–385.

    Article  PubMed  CAS  Google Scholar 

  20. Issever AS, Vieth V, Lotter A, et al.: Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 2002, 9:1395–1406.

    Article  PubMed  Google Scholar 

  21. Laib A, Newitt DC, Lu Y, Majumdar S: New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 2002, 13:130–136.

    Article  PubMed  CAS  Google Scholar 

  22. Hwang SN, Wehrli FW: Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med 2002, 47:948–957.

    Article  PubMed  Google Scholar 

  23. Link TM, Vieth V, Langenberg R, et al.: Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 2003, 72:156–165.

    Article  PubMed  CAS  Google Scholar 

  24. Hwang SN, Wehrli FW, Williams JL: Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 1997, 24:1255–1261.

    Article  PubMed  CAS  Google Scholar 

  25. Link TM, Majumdar S, Lin JC, et al.: A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 1998, 13:122–132.

    Article  PubMed  CAS  Google Scholar 

  26. Majumdar S, Link TM, Augat P, et al.: Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 1999, 10:231–239.

    Article  PubMed  CAS  Google Scholar 

  27. Link TM, Vieth V, Matheis J, et al.: Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 2002, 12:401–408. An MRI with spatial resolution of 0.195 mm was performed in the radius and calcaneus. The MRI-derived structural parameters were different in subjects with vertebral fractures and age-matched controls without fractures. The highest area under the receiver operating characteristic curve was seen for the combination of several structural parameters (0.9) as well as for the lumbar spine BMD obtained by quantitative CT (also 0.9).

    Article  PubMed  Google Scholar 

  28. Wehrli FW, Gomberg BR, Saha PK, et al.: Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 2001, 16:1520–1531.

    Article  PubMed  CAS  Google Scholar 

  29. Ito M, Ohki M, Hayashi K, et al.: Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995, 194:55–59.

    PubMed  CAS  Google Scholar 

  30. Cortet B, Dubois P, Boutry N, et al.: Computed tomography image analysis of the calcaneus in male osteoporosis. Osteoporos Int 2002, 13:33–41.

    Article  PubMed  CAS  Google Scholar 

  31. Muller R, Van Campenhout H, Van Damme B, et al.: Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and microcomputed tomography. Bone 1998, 23:59–66.

    Article  PubMed  CAS  Google Scholar 

  32. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 1999, 25:55–60.

    Article  PubMed  CAS  Google Scholar 

  33. Muller R, Ruegsegger P: Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inform 1997, 40:61–79.

    PubMed  CAS  Google Scholar 

  34. Banse X, Devogelaer JP, Grynpas M: Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 2002, 30:829–835.

    Article  PubMed  CAS  Google Scholar 

  35. Pistoia W, van Rietbergen B, Lochmuller EM, et al.: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002, 30:842–848. This study demonstrates that high-resolution CT can be used for cadaver forearms and for in vivo imaging of the radius. Adding the finite element analysis further improves the correlation with biomechanical strength.

    Article  PubMed  CAS  Google Scholar 

  36. Link TM, Majumdar S, Lin JC: Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998, 22:15–24.

    Article  PubMed  CAS  Google Scholar 

  37. Millard J, Augat P, Link TM, et al.: Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 1998, 63:482–489.

    Article  PubMed  CAS  Google Scholar 

  38. Ouyang X, Majumdar S, Link TM, et al.: Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. Med Phys 1998, 25:2037–2045.

    Article  PubMed  CAS  Google Scholar 

  39. Lin JC, Grampp S, Link T, et al.: Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 1999, 9:516–524.

    PubMed  CAS  Google Scholar 

  40. Lespessailles E, Jullien A, Eynard E, et al.: Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 1998, 31:817–824.

    Article  PubMed  CAS  Google Scholar 

  41. Lespessailles E, Roux JP, Benhamou CL, et al.: Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int 1998, 63:121–125.

    Article  PubMed  CAS  Google Scholar 

  42. Caligiuri P, Giger ML, Favus M: Multifractal radiographic analysis of osteoporosis. Med Phys 1994, 21:503–508.

    Article  PubMed  CAS  Google Scholar 

  43. Caligiuri P, Giger ML, Favus MJ, et al.: Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 1993, 186:471–474.

    PubMed  CAS  Google Scholar 

  44. Majumdar S, Link TM, Millard J, et al.: In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 2000, 27:2594–2599.

    Article  PubMed  CAS  Google Scholar 

  45. Pothuaud L, Lespessailles E, Harba R, et al.: Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998, 8:618–625.

    Article  PubMed  CAS  Google Scholar 

  46. Benhamou CL, Poupon S, Lespessailles E, et al.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001, 16:697–704. This study shows that fractal analysis of calcaneus radiographs differentiated subjects with and without osteoporotic fractures even when controlling for age and BMD.

    Article  PubMed  CAS  Google Scholar 

  47. Lespessailles E, Poupon S, Niamane R, et al.: Fractal analysis of trabecular bone texture on calcaneus radiographs: effects of age, time since menopause and hormone replacement therapy. Osteoporos Int 2002, 13:366–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vokes, T.J., Favus, M.J. Noninvasive assessment of bone structure. Curr Osteoporos Rep 1, 20–24 (2003). https://doi.org/10.1007/s11914-003-0004-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-003-0004-9

Keywords

Navigation