Skip to main content
Log in

Pleiotropic effects of fibrates

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Fibrates are a widely used class of hypolipidemic drugs. The effects of fibrates are mediated through the activation of the transcription factor peroxisome proliferator-activated receptor α (PPARα). Fibrates act to modulate the transcription of genes that encode proteins controlling lipid transport and metabolism. Fibrates also exert pleiotropic anti-inflammatory effects by downregulating expression of genes encoding inflammatory cytokines and acute phase response proteins. These combined actions translate into clinical benefit as demonstrated by the reduction in cardiovascular morbidity and mortality in primary and secondary intervention trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbier O, Torra IP, Duguay Y, et al.: Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002, 22:717–726.

    Article  PubMed  CAS  Google Scholar 

  2. Maix N, Sukhova G, Collins T, et al.: PPARa activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999, 99:3125–3131.

    Google Scholar 

  3. Delerive P, Martin-Nizard F, Chinetti G, et al.: PPAR activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the AP-1 signaling pathway. Circ Res 1999, 85:394–402.

    PubMed  CAS  Google Scholar 

  4. Staels B, Koenig W, Habib A, et al.: Activation of human aortic smooth-muscle cells is inhibited by PPARa but not by PPARg activators. Nature (London) 1998, 393:790–793.

    Article  CAS  Google Scholar 

  5. Chinetti G, Griglio S, Antonucci M, et al.: Activation of peroxisome proliferator-activated receptors a and g induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998, 273:25573–25580.

    Article  PubMed  CAS  Google Scholar 

  6. Chinetti G, Gbaguidi GF, Griglio S, et al.: CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 2000, 101:2411–2417.

    PubMed  CAS  Google Scholar 

  7. Dharancy S, Malapel M, Perlemuter G, et al.: Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. Gastroenterology 2005, 128:334–342.

    Article  PubMed  CAS  Google Scholar 

  8. Blanquart C, Mansouri R, Fruchart JC, et al.: Different ways to regulate the PPARalpha stability. Biochem Biophys Res Commun 2004, 319:663–670.

    Article  PubMed  CAS  Google Scholar 

  9. Blanquart C, Barbier O, Fruchart JC, et al.: Peroxisome proliferator-activated receptor alpha (PPARalpha) turnover by the ubiquitin-proteasome system controls the ligand-induced expression level of its target genes. J Biol Chem 2002, 277:37254–37259.

    Article  PubMed  CAS  Google Scholar 

  10. Blanquart C, Mansouri R, Paumelle R, et al.: The protein kinase C signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha. Mol Endocrinol 2004, 18:1906–1918.

    Article  PubMed  CAS  Google Scholar 

  11. Kliewer SA, Sundseth SS, Jones SA, et al.: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors a and g. Proc Natl Acad Sci U S A 1997, 94:4318–4323.

    Article  PubMed  CAS  Google Scholar 

  12. Forman BM, Chen J, Evans RM: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors a and d. Proc Natl Acad Sci U S A 1997, 94:4312–4317.

    Article  PubMed  CAS  Google Scholar 

  13. Devchand PR, Keller H, Peters JM, et al.: The PPARa-leukotriene B4 pathway to inflammation control. Nature (London) 1996, 384:39–43.

    Article  CAS  Google Scholar 

  14. Delerive P, Furman C, Teissier E, et al.: Oxidized phospholipids activate PPARa in a phospholipase A2-dependant manner. FEBS Lett 2000, 471:34–38.

    Article  PubMed  CAS  Google Scholar 

  15. Duez H, Lefebvre B, Poulain P, et al.: Regulation of human apoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor alpha modulation. Arterioscler Thromb Vasc Biol 2005, 25:585–591.

    Article  PubMed  CAS  Google Scholar 

  16. Vu-Dac N, Gervois P, Jakel H, et al.: Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J Biol Chem 2003, 278:17982–17985.

    Article  PubMed  CAS  Google Scholar 

  17. Patsouris D, Mandard S, Voshol PJ, et al.: PPARalpha governs glycerol metabolism. J Clin Invest 2004, 114:94–103.

    Article  PubMed  CAS  Google Scholar 

  18. Chinetti G, Lestavel S, Bocher V, et al.: PPARa and PPARg activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Med 2001, 7:53–58.

    Article  PubMed  CAS  Google Scholar 

  19. Haraguchi G, Kobayashi Y, Brown ML, et al.: PPARalpha and PPARgamma activators suppress the monocyte-macrophage apolipoprotein B48 receptor. J Lipid Res 2003, 44:1224–1231.

    Article  PubMed  CAS  Google Scholar 

  20. Gbaguidi GF, Chinetti G, Milosavljevic D, et al.: Peroxisome proliferator-activated receptor (PPAR) agonists decrese lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Lett 2002, 512:85–90.

    Article  PubMed  CAS  Google Scholar 

  21. Li L, Beauchamp MC, Renier G: Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 2002, 165:101–110.

    Article  PubMed  CAS  Google Scholar 

  22. Chinetti G, Lestavel S, Fruchart JC, et al.: Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res 2003, 92:212–217.

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh S, Natarajan R: Cloning of the human cholesteryl ester hydrolase promoter: identification of functional peroxisomal proliferator-activated receptor responsive elements. Biochem Biophys Res Commun 2001, 284:1065–1070.

    Article  PubMed  CAS  Google Scholar 

  24. Chinetti G, Zawadski C, Fruchart JC, Staels B: Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun 2004, 314:151–158.

    Article  PubMed  CAS  Google Scholar 

  25. Delerive P, Gervois P, Fruchart JC, Staels B: Induction of IkBa expression as a mechanism contributing to the anti-inflammatory activities of PPARa activators. J Biol Chem 2000, 275:36703–36707.

    Article  PubMed  CAS  Google Scholar 

  26. Delerive P, De Bosscher K, Vanden Berghe W, et al.: DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha. Mol Endocrinol 2002, 16:1029–1039.

    Article  PubMed  CAS  Google Scholar 

  27. Kleemann R, Geryois PP, Verschuren L, et al.: Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NF{kappa} B∼C/EBP-{beta} complex formation. Blood 2002, 101:545–551.

    Article  PubMed  CAS  Google Scholar 

  28. Gervois P, Vu-Dac N, Kleemann R, et al.: Negative regulation of human fibrinogen gene expression by PPAR{alpha} agonists via inhibition of C/EBPbeta. J Biol Chem 2001, 276:33471–33477.

    Article  PubMed  CAS  Google Scholar 

  29. Gervois P, Kleemann R, Pilon A, et al.: Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-alpha activator fenofibrate. J Biol Chem 2004, 279:16154–16160.

    Article  PubMed  CAS  Google Scholar 

  30. Chinetti G, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obes Relat Metab Disord 2003, 27(Suppl 3):S41-S45.

    Article  PubMed  CAS  Google Scholar 

  31. Lin R, Liu J, Gan W, Yang G: C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 2004, 27:1537–1543.

    Article  PubMed  CAS  Google Scholar 

  32. Neve BP, Corseaux D, Chinetti G, et al.: PPARalpha agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 2001, 103:207–212.

    PubMed  CAS  Google Scholar 

  33. Maix N, Mackman N, Schonbeck U, et al.: PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 2001, 103:213–219.

    Google Scholar 

  34. Shu H, Wong B, Zhou G, et al.: Activation of PPARa or g reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000, 267:345–349.

    Article  PubMed  CAS  Google Scholar 

  35. Hourton D, Delerive P, Stankova J, et al.: Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor alpha down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem J 2001, 354:225–232.

    Article  PubMed  CAS  Google Scholar 

  36. Barbier O, Villeneuve L, Bocher V, et al.: The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem 2003, 278:13975–13983.

    Article  PubMed  CAS  Google Scholar 

  37. Forman HJ, Torres M: Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002, 166:S4-S8.

    Article  PubMed  Google Scholar 

  38. Teissier E, Nohara A, Chinetti G, et al.: Peroxisome proliferator-activated receptor alpha induces NADPH oxidase activity in macrophages, leading to the generation of LDL with PPARalpha activation properties. Circ Res 2004, 95:1174–1182.

    Article  PubMed  CAS  Google Scholar 

  39. Inoue I, Goto S, Matsunaga T, et al.: The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 2001, 50:3–11.

    Article  PubMed  CAS  Google Scholar 

  40. Marx N, Kehrle B, Kohlhammer K, et al.: PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 2002, 90:703–710.

    Article  PubMed  CAS  Google Scholar 

  41. Ericsson C, Hamsten A, Nilsson J, et al.: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996, 347:849–853.

    Article  PubMed  CAS  Google Scholar 

  42. Frick MH, Elo O, Haapa K, et al.: Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987, 317:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  43. Frick MH, Syvanne M, Nieminen MS, et al.: Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation 1997, 96:2137–2143.

    PubMed  CAS  Google Scholar 

  44. Rubins HB, Robins SJ, Collins D, et al.: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999, 341:410–418.

    Article  PubMed  CAS  Google Scholar 

  45. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001, 357:905–910.

  46. Sebestjen M, Keber I, Zegura B, et al.: Statin and fibrate treatment of combined hyperlipidemia: the effects on some novel risk factors. Thromb Haemost 2004, 92:1129–1135.

    PubMed  CAS  Google Scholar 

  47. Despres JP, Lemieux I, Pascot A, et al.: Gemfibrozil reduces plasma C-reactive protein levels in abdominally obese men with the atherogenic dyslipidemia of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2003, 23:702–703.

    Article  PubMed  CAS  Google Scholar 

  48. Madej A, Okopien B, Kowalski J, et al.: Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb. Int J Clin Pharmacol Ther 1998, 36:345–349.

    PubMed  CAS  Google Scholar 

  49. Kowalski J, Okopien B, Madej A, et al.: Effects of fenofibrate and simvastatin on plasma sICAM-1 and MCP-1 concentrations in patients with hyperlipoproteinemia. Int J Clin Pharmacol Ther 2003, 41:241–247.

    PubMed  CAS  Google Scholar 

  50. Okopien B, Krysiak R, Kowalski J, et al.: The effect of statins and fibrates on interferon-gamma and interleukin-2 release in patients with primary type II dyslipidemia. Atherosclerosis 2004, 176:327–335.

    Article  PubMed  CAS  Google Scholar 

  51. Jonkers IJ, Mohrschladt MF, Westendorp RG, et al.: Severe hypertriglyceridemia with insulin resistance is associated with systemic inflammation: reversal with bezafibrate therapy in a randomized controlled trial. Am J Med 2002, 112:275–280.

    Article  PubMed  CAS  Google Scholar 

  52. Ansquer JC, Foucher C, Rattier S, et al.: Fenofibrate reduces progression to microalbuminuria over 3 years in a placebocontrolled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis 2005, 45:485–493.

    Article  PubMed  CAS  Google Scholar 

  53. Tambaki AP, Rizos E, Tsimihodimos V, et al.: Effects of anti-hypertensive and hypolipidemic drugs on plasma and high-density lipoprotein-associated platelet activating factor-acetylhydrolase activity. J Cardiovasc Pharmacol Ther 2004, 9:91–95.

    Article  PubMed  CAS  Google Scholar 

  54. Tsimihodimos V, Kostoula A, Kakafika A, et al.: Effect of fenofibrate on serum inflammatory markers in patients with high triglyceride values. J Cardiovasc Pharmacol Ther 2004, 9:27–33.

    Article  PubMed  CAS  Google Scholar 

  55. Dierkes J, Westphal S, Luley C: The effect of fibrates and other lipid-lowering drugs on plasma homocysteine levels. Expert Opin Drug Safety 2004, 3:101–111.

    Article  CAS  Google Scholar 

  56. Luc G, Jacob N, Bouly M, et al.: Fenofibrate increases homocystinemia through a PPARalpha-mediated mechanism. J Cardiovasc Pharmacol 2004, 43:452–453.

    Article  PubMed  CAS  Google Scholar 

  57. Jones PH, Davidson MH: Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol 2005, 95:120–122.

    Article  PubMed  CAS  Google Scholar 

  58. Blum A, Seligmann H, Livneh A, Ezra D: Severe gastrointestinal bleeding induced by a probable hydroxycoumarin-bezafibrate interaction. Isr J Med Sci 1992, 28:47–49.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinetti-Gbaguidi, G., Fruchart, J.C. & Staels, B. Pleiotropic effects of fibrates. Curr Atheroscler Rep 7, 396–401 (2005). https://doi.org/10.1007/s11883-005-0053-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-005-0053-x

Keywords

Navigation