Skip to main content
Log in

A Citric Acid/Na2S2O3 System for the Efficient Leaching of Valuable Metals from Spent Lithium-Ion Batteries

  • Urban Mining: Characterization and Recycling of Solid Wastes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recycling of valuable metals from spent lithium-ion batteries (LIBs) appears inevitable for both environmental protection and resource recovery. In the present study, an efficient hydrometallurgical leaching of Co and Li from cathode materials of spent LIBs using a citric acid/sodium thiosulfate (Na2S2O3) system is explored. The effects of citric acid and Na2S2O3 concentrations, leaching time, temperature, and the solid/liquid (S/L) ratio on the leaching processes are also examined. With the exception of the S/L ratio, the increase of citric acid concentration, Na2S2O3 concentration, leaching time, and temperature all have positive effects on the leaching of Co and Li. Ultimately, approximately 96% of Co and 99% of Li are recycled from the spent LIBs in this citric acid/sodium thiosulfate system under the leaching conditions of an S/L ratio of 20 g l−1, concentration of Na2S2O3 of 0.3 M, concentration of citric acid of 1.2 M, leaching time of 30 min, and leaching temperature of 70°C. The Avrami equation is well fitted by the data of the leaching processes, and model equations are built to describe the leaching of Co and Li. Furthermore, pure sulfur can be obtained as a by-product during the leaching process, and SO2 produced during the reaction is easily collected as a raw material for industrial production of sulfuric acid. The present study represents a promising process for hydrometallurgical recovery of valuable metals from spent LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Scrosati, J. Hassoun, and Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011).

    Article  Google Scholar 

  2. J. Ordoñez, E.J. Gago, and A. Girard, Renew. Sustain. Energy Rev. 60, 195 (2016).

    Article  Google Scholar 

  3. G.J. Wang, H.P. Zhang, L.J. Fu, B. Wang, and Y.P. Wu, Electrochem. Commun. 9, 1873 (2007).

    Article  Google Scholar 

  4. R.C. Wang, Y.C. Lin, and S.H. Wu, Hydrometallurgy 99, 194 (2009).

    Article  Google Scholar 

  5. Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, and W. He, Waste Manag. 51, 227 (2016).

    Article  Google Scholar 

  6. L. Li, W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, J. Power Sources 282, 544 (2015).

    Article  Google Scholar 

  7. H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, and K. Kwon, J. Hazard. Mater. 313, 138 (2016).

    Article  Google Scholar 

  8. X. Zeng, J. Li, and N. Singh, Crit. Rev. Environ. Sci. Technol. 44, 1129 (2014).

    Article  Google Scholar 

  9. E. Gratz, Q. Sa, D. Apelian, and Y. Wang, J. Power Sources 262, 255 (2014).

    Article  Google Scholar 

  10. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, and S. Angaiah, Nanoscale 10, 20414 (2018).

    Article  Google Scholar 

  11. Z. Qu, M. Shi, H. Wu, Y. Liu, J. Jiang, and C. Yan, J. Power Sources 410–411, 179 (2019).

    Article  Google Scholar 

  12. K.S. Sangwan and A. Jindal, Int. J. Sustain. Eng. 6, 359 (2013).

    Article  Google Scholar 

  13. X. Zhang, Y. Xie, X. Lin, H. Li, and H. Cao, J. Mater. Cycles Waste Manag. 15, 420 (2013).

    Article  Google Scholar 

  14. S.A. Mazen and N.I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).

    Article  Google Scholar 

  15. D. Song, X. Wang, E. Zhou, P. Hou, F. Guo, and L. Zhang, J. Power Sources 232, 348 (2013).

    Article  Google Scholar 

  16. J. Li, G. Wang, and Z. Xu, J. Hazard. Mater. 302, 97 (2016).

    Article  Google Scholar 

  17. G.P. Nayaka, K.V. Pai, G. Santhosh, and J. Manjanna, Hydrometallurgy 161, 54 (2016).

    Article  Google Scholar 

  18. L. Yao, H. Yao, G. Xi, and Y. Feng, RSC Adv. 6, 17947 (2016).

    Article  Google Scholar 

  19. K. Liu and F.S. Zhang, J. Hazard. Mater. 316, 19 (2016).

    Article  Google Scholar 

  20. Z. Niu, Y. Zou, B. Xin, S. Chen, C. Liu, and Y. Li, Chemosphere 109, 92 (2014).

    Article  Google Scholar 

  21. N.B. Horeh, S.M. Mousavi, and S.A. Shojaosadati, J. Power Sources 320, 257 (2016).

    Article  Google Scholar 

  22. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, J. Clean. Prod. 116, 249 (2016).

    Article  Google Scholar 

  23. D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, and Y.I. Lee, J. Power Sources 132, 145 (2004).

    Article  Google Scholar 

  24. J. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang, and B. Liang, J. Power Sources 177, 512 (2008).

    Article  Google Scholar 

  25. L. Zhao, D. Yang, and N.W. Zhu, J. Hazard. Mater. 160, 648 (2008).

    Article  Google Scholar 

  26. L. Li, J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang, Waste Manag. 30, 2615 (2010).

    Article  Google Scholar 

  27. L. Li, J. Lu, Y. Ren, X.X. Zhang, R.J. Chen, F. Wu, and K. Amine, J. Power Sources 218, 21 (2012).

    Article  Google Scholar 

  28. F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, and L. Toro, Waste Manag. 51, 214 (2016).

    Article  Google Scholar 

  29. R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, Waste Manag. 64, 244 (2017).

    Article  Google Scholar 

  30. J. Kang, G. Senanayake, J. Sohn, and S.M. Shin, Hydrometallurgy 100, 168 (2010).

    Article  Google Scholar 

  31. A. Chagnes and B. Pospiech, J. Chem. Technol. Biotechnol. 88, 1191 (2013).

    Article  Google Scholar 

  32. F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, and L. Toro, J. Ind. Eng. Chem. 20, 3201 (2014).

    Article  Google Scholar 

  33. M. Joulié, E. Billy, R. Laucournet, and D. Meyer, Hydrometallurgy 169, 426 (2017).

    Article  Google Scholar 

  34. L. Li, J.B. Dunn, X.X. Zhang, L. Gaines, R.J. Chen, F. Wu, and K. Amine, J. Power Sources 233, 180 (2013).

    Article  Google Scholar 

  35. L. Li, J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu, J. Hazard. Mater. 176, 288 (2010).

    Article  Google Scholar 

  36. X. Zeng, J. Li, and B. Shen, J. Hazard. Mater. 295, 112 (2015).

    Article  Google Scholar 

  37. X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, Waste Manag. 38, 349 (2015).

    Article  Google Scholar 

  38. G.P. Nayaka, J. Manjanna, K.V. Pai, R. Vadavi, S.J. Keny, and V.S. Tripathi, Hydrometallurgy 151, 73 (2015).

    Article  Google Scholar 

  39. J. Wang, M. Chen, H. Chen, T. Luo, and Z. Xu, Proced. Environ. Sci. 16, 443 (2012).

    Article  Google Scholar 

  40. J. Guan, Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang, and Z. Guo, ACS Sustain. Chem. Eng. 5, 1026 (2017).

    Article  Google Scholar 

  41. E. Billy, M. Joulié, R. Laucournet, A. Boulineau, E. De Vito, and D. Meyer, ACS Appl. Mater. Interfaces 10, 16424 (2018).

    Article  Google Scholar 

  42. P. Ashtari and P. Pourghahramani, J. Mater. Cycles Waste Manag. 20, 155 (2018).

    Article  Google Scholar 

  43. P. Meshram, B.D. Pandey, and T.R. Mankhand, Waste Manag. 45, 306 (2015).

    Article  Google Scholar 

  44. E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Hydrometallurgy 167, 66 (2017).

    Article  Google Scholar 

  45. R. Golmohammadzadeh, F. Faraji, and F. Rashchi, Resour. Conserv. Recycl. 136, 418 (2018).

    Article  Google Scholar 

  46. S. Sakultung, K. Pruksathorn, and M. Hunsom, Korean J. Chem. Eng. 24, 272 (2007).

    Article  Google Scholar 

  47. B. Fan, X. Chen, T. Zhou, J. Zhang, and B. Xu, Waste Manag. Res. 34, 474 (2016).

    Article  Google Scholar 

  48. C.K. Lee and K.I. Rhee, Hydrometallurgy 68, 5 (2003).

    Article  Google Scholar 

  49. M. Joulié, R. Laucournet, and E. Billy, J. Power Sources 247, 551 (2014).

    Article  Google Scholar 

  50. R. Stoyanova, E. Zhecheva, and L. Zarkova, Solid State Ion. 73, 233 (1994).

    Article  Google Scholar 

  51. B. Swain, J. Jeong, J.C. Lee, G.H. Lee, and J.S. Sohn, J. Power Sources 167, 536 (2007).

    Article  Google Scholar 

  52. L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, Hydrometallurgy 108, 80 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Gaoyuan Discipline of Shanghai–Environmental Science and Engineering (Resource Recycling Science and Engineering), Shanghai “Chenguang” Program (15CG60), Shanghai Sailing Program (18YF1429900, 15YF1404300), Shanghai Natural Science Foundation (15ZR1416800), Natural Science Foundation of China (51678353), Cultivation discipline fund of Shanghai Polytechnic University (XXKPY1601), Shanghai Polytechnic University Leap Program (EGD19XQD02, EGD18XQD24), and Henan Key Laboratory of Coal Green Conversion (Henan Polytechnic University, CGCF201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Jiao, Yaoguang Guo or Shuai Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., He, X., Lou, X. et al. A Citric Acid/Na2S2O3 System for the Efficient Leaching of Valuable Metals from Spent Lithium-Ion Batteries. JOM 71, 3673–3681 (2019). https://doi.org/10.1007/s11837-019-03629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03629-y

Navigation