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Based on the results of microstructure simulations, fluid flow through the
semisolid region during directional solidification of the technical Ni-base alloy
718 has been studied. Three-dimensional microstructures at different posi-
tions in the semisolid region were obtained by using a multicomponent mul-
tiphase-field model that was online coupled to a commercial thermodynamic
database. For the range of five different primary dendrite distances k1 be-
tween 50 lm and 250 lm, the flow velocity and the permeability perpendic-
ular to the dendrite growth direction was evaluated by using a proprietary
Lattice-Boltzmann model. The commercial CFD software ANSYS FLUENT
was alternatively applied for reference. Consistent values of the average flow
velocity along the dendrites were obtained for both methods. From the results
of the fluid flow simulations, the cross-permeability was evaluated as a
function of temperature and fraction liquid for each of the five different pri-
mary dendrite distances k1. The obtained permeability values can be
approximated by a single analytical function of the fraction liquid and k1 and
are discussed and compared with known relations from the literature.

INTRODUCTION

In simulation of solidification processes, fluid flow
phenomena play a crucial role. Numerous types of
defects arise during solidification as the formation
of dendritic structures in the mushy zone causes
specific fluid flow patterns. Although most of these
defects are located at the micro- or meso-scale, they
can be linked to the macro-scale by the melt per-
meability of the mushy zone. As stated by several
authors, the specific permeability is a determining
parameter in fluid flow phenomena like freckles, as
well as in defects like porosity and hot cracking
among others.1–4

Improvements of simulation techniques and the
combination of multiple tools working on different
length scales through Integrated Computational
Materials Engineering (ICME)5 open up new pos-
sibilities of investigations on the impact of perme-
ability on casting defects. Phase-field models have
become very popular for the simulation of the
microstructure evolution during solidification pro-
cesses of alloys. To describe their thermodynamic

properties, idealized descriptions of the phase dia-
grams (ideal solution approximation6 and linear
phase diagrams7) have been used for binary and
pseudo-binary alloys. But this approximation is not
suitable for use in multicomponent multiphase
systems. Instead, using Gibbs energy descriptions
assessed from experimental data via the Calphad
approach,8 together with software tools for Gibbs
energy minimization,9 seems to be most promising.

MICRESS�10 has been developed by Access11 at
Aachen Technical University (RWTH). It is based on
a phase-field concept for multiphase systems that
has been consequently extended to multicomponent
systems12–14 by direct coupling to thermodynamic
databases via the TQ Fortran interface to Thermo-
Calc.9 Since then the software has been developed
further and applied to different alloy systems and to
Ni-based super alloys.15,16

Although numerous phase-field studies on direc-
tional dendritic solidification have been published,
the three-dimensional (3D) simulation of represen-
tative parts of the mushy zone for technical multi-
component alloys, which are needed for a reliable
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evaluation of the liquid permeability, is still a
challenge. The present paper reports phase field
simulations carried out with MICRESS� that
allowed subsequent investigations concerning the
permeability during the solidification process. The
results of the 3D dendrite simulations were sub-
jected to further calculations by using the Lattice-
Boltzmann method and the commercial CFD soft-
ware ANSYS FLUENT. This allowed for assessment
of the relation between temperature, fraction liquid
and cross permeability for isothermal fluid flow,
which plays a crucial role for freckle formation in
technical remelting processes (e.g., of alloy 718).2

The obtained results are compared with empirical
relations provided by Poirier17 and Madison.18

PHASE-FIELD SIMULATION

The multiphase-field theory describes the evolu-
tion of multiple phase-field parameters /að~x; tÞ in
time and space. The phase-field parameters reflect
the spatial distribution of different grains of differ-
ent orientation and/or of several phases with dif-
ferent thermodynamic properties. At the interfaces,
the phase-field variables change continuously over
an interface thickness g that can be defined as being
large compared with the atomic interface thickness
but small compared with the microstructure length
scale. The time evolution of the phases is calculated
by a set of phase-field equations deduced by mini-
mization of the free energy functional:13

_/a ¼
X

b

Mab ~nð Þ r�ab ~nð Þ Kab þ
p
g

ffiffiffiffiffiffiffiffiffiffiffi
/a/b

q
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� �
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Kab ¼ /br2/a � /ar2/b þ
p2

g2
/a � /b

� �
: ð2Þ

In Eq. 1, Mab is the mobility of the interface as a
function of the interface orientation, described by
the normal vector ~n. r*ab is the anisotropic surface
stiffness, and Kab is related to the local curvature of
the interface. The interface, on the one hand, is
driven by the curvature contribution r*ab Kab and,
on the other hand, by the thermodynamic driving
force DGab. The thermodynamic driving force, which
is a function of temperature T and local composition
~c ¼ c1; c2; . . . ; ck

� �
, couples the phase-field equations

to the multiphase diffusion equations for the k
alloying elements:

_~c ¼ r
XN

a¼1

/a
~Dar~ca with~cdefined by~c ¼

XN

a¼1

/a~ca ð3Þ

and ~Da being the multicomponent diffusion coeffi-

cient matrix for phase a. ~Da is calculated online from
databases for the given concentration and
temperature.

These equations are implemented in the software
package MICRESS�10 being used for the simula-
tions throughout this paper. Direct coupling to
thermodynamic and mobility databases is accom-
plished via the TQ-interface of Thermo-Calc Soft-
ware.9 The thermodynamic driving force DGab and
the solute partitioning are calculated separately by
using the quasi-equilibrium approach,13 and they
are introduced into the equation for the multiple
phase-fields Eq. 1. This allows the software package
to be highly flexible with respect to thermodynamic
data of a variety of alloy systems and not to be
restricted by the number of elements or phases
being considered. Various extrapolation schemes14

have been implemented to minimize the thermody-
namic data handling, especially for complex alloy
systems.

Simulation Conditions

For simulation of 3D dendritic microstructures,
the smallest representative domain was chosen by
taking advantage of the fourfolded mirror symmetry
of the dendrites (Fig. 1). Correspondingly, symmet-
ric boundary conditions (Neumann condition with
symmetry plane through the centers of the bound-
ary FD grid cells) have been used on the four sides
of the domain for the phase field and the concen-
tration fields. For the top concentration boundary, a
fixed condition was used to ensure that the far-field
concentration remains constant (and equal to the
average alloy composition). At the bottom, an iso-
lation (Neumann) boundary condition was used.

Simulation started with a temperature of 1733 K
at the bottom of the domain. A constant tempera-
ture gradient of G = 40 K/cm and cooling rate of
V = 0.40 K/s were applied in all cases, ensuring a
constant secondary arm spacing,19 the average of
which has been determined as 31.2 lm. TiN parti-
cles were nucleated at the beginning according to a
seed-density model by using an arbitrary density-
radius distribution20,21 and were given time to grow
and ripen before the primary dendrite appeared. To
reach stationary growth conditions as quickly as
possible, nucleation of the initial seed of fcc phase
was performed exactly at the stationary tip tem-
perature of 1618.8 K at the lower left corner of the
simulation domain. Due to the high composition of
alloying elements in alloy 718, stationary growth is
achieved almost immediately, and the tip tempera-
ture remained at this value until the dendrite
reached the top boundary.

To reduce the required calculation time, spatial
resolution was reduced to a minimum and a grid
spacing of Dx = 1.0 lm was chosen. The total height
of the domain was 1000 grid cells or 1 mm, and the
width varied from 25 to 150 cells, according to a
primary dendrite spacing of 50 lm to 300 lm. The
interface mobility value for the liquid/fcc boundary
was calibrated such that the tip temperature stayed
constant during the period of free dendrite tip
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growth, as will be discussed. This value of
0.058 cm4 J�1 s�1 was applied for all simulations.
For other interfaces (TiN-liquid, TiN-fcc), the
mobility values were estimated. Respective numer-
ical parameters are given in Table I.

In the phase-field simulations, the elements Ni,
Cr, Fe, Nb, Mo, Ti, Al, C, N, and B and the phases
LIQUID, FCC_A1, and FCC_A1#2 (Ti(N,C)) were
taken into account. Thermodynamic data were
obtained directly by coupling to the thermodynamic
database TTNI7. Diffusion coefficients for the solid
phases were taken from the mobility database
MOBNI1;9 for the liquid phase, they were estimated
to 1 9 10�5 cm2 s�1 for all elements.

Calibration of Interface Kinetics

It is well known that phase-field models suffer
from numerical artifacts if spatial resolution is not
sufficiently high.22 If the interface thickness is not
much smaller than the diffusion length of all ele-
ments, the interface kinetics deviate from the sharp
interface solution due to artificial solute trapping.
As an additional problem, the interface even may

get instable if the driving force varies too much over
the length of the diffuse interface. For the case of
solidification, there have been attempts to correct
for these artifacts by introducing an anti-trapping
current to the diffusion equations and by applying a
suitable correction to the interface mobility (the so-
called thin interface limit).23 Those approaches are
often referred to as quantitative phase-field models.
But even when rigorous thin interface corrections
are considered, the interface thickness has to be on
the order of the capillary length, and the required
grid would still be too fine for 3D application of the
phase-field method to multicomponent and multi-
phase technical alloys.

A typical approach is to compensate the artificial
trapping effect by the choice of suitable interface
mobility values. This has been done recently by
calibration against a representative high-resolution
reference simulation.21 In the present case, how-
ever, the high computational effort makes such a
calibration impossible, particularly as no substan-
tial reduction of the domain size is possible without
affecting the selection of the correct stationary tip
temperature. Therefore, in this work, another

Fig. 1. Growth of an alloy 718 dendrite at a primary spacing k1 = 250 lm.

Table I. Numerical parameters

Interface
Interface

energy (J cm22)
Static anisotropy

coefficient
Interface mobility

(cm4 J21 s21)
Kinetic anisotropy

coefficient

Liquid/fcc 2.0 9 10�5 0.3 0.058 0.3
Lquid/TiN 1.0 9 10�4 – 1.0 9 10�8 –
fcc/TiN 1.0 9 10�4 – 1.0 9 10�11 –
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approach has been used to obtain quantitative
interface kinetics: A numerical approach based on
KGT theory24 was used to estimate the stationary
tip temperature for the given temperature gradient
and cooling rate. A pseudo-binary phase diagram
description in the form

c�s ¼
X

i

cis; c
�
l ¼ c�s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
cil � cis
� �2

q
ð4Þ

m�
s ¼

P
i cil � cis
� �

mi
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i cil � cis
� �2

q ; m�
l ¼

P
i cil � cis
� �

mi
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i cil � cis
� �2

q ð5Þ

was used for the KGT model, leading to a value of
9.6 K for the dendrite tip undercooling. By system-
atic variation of the interface mobility of the liquid-
fcc interface, a calibrated value of 0.058 cm4 J�1 s�1

was obtained that guaranteed a correct tip temper-
ature despite the relatively coarse grid resolution.

Furthermore, an averaging of the driving force
DG along the normal vector of the interface was
performed to reduce ‘‘artificial solute trapping’’ and
to stabilize the interface profile, and a small inter-
face thickness (g = 3Dx = 3 lm) was used that fur-
ther helps reducing trapping artifacts. Artifacts
originating from the small number of interface grid
points were minimized by using a correction
scheme for numerical discretization errors.25

Results of 3D Dendrite Simulations

Figure 1 shows the shape of the growing dendrite
as an iso-surface with / ¼ 0:5 at three different
times (t = 3, 9, and 37 s). Small spherical TiN par-
ticles can be observed in front of the dendrite tip,
which have formed at a much higher temperature.

The dendrite emerges and overgrows tertiary arms
that compete with the primary trunk. After hitting
the top boundary, dendrite coarsening is the main
phenomenon that can be observed. Due to the
immense calculation time, only in the case of the
smaller simulation domains (lower primary spac-
ing), an overall fraction of solid above 0.5 could be
reached.

It is well known that for given G/V ratio, k1 is
history dependent and may adopt different values
within a certain stability range.26 A comparison of
the simulated growth morphologies of alloy 718
dendrites for different values of the primary den-
drite spacing k1 is shown in Fig. 2. For the smallest
spacing of 50 lm, only small side branches can form,
leading to a cellular-dendritic growth mode. With an
increasing value of k1, the side branches evolve
more and more and eventually show tertiary
branching.

Furthermore, these tertiary branches that grow
in the direction of the temperature gradient com-
pete with the primary dendrite. When a primary
distance of k1 = 300 lm is reached, those tertiary
arms cannot be blocked any more. This indicates
that the upper limit of the stability range has been
passed. Hence, this simulation set has been dis-
carded from further evaluation.

SIMULATION OF PERMEABILITY

In the process of solidification, the mushy zone is
a domain of solid phases with emerging dendritic
structures and an interconnected void phase filled
with liquid. It has been proven to be consistent to
model the mushy zone as a porous medium showing
a spatially varying permeability.27

Fig. 2. Comparison of growth morphology for six different values of the primary dendrite spacing.
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As the criteria of a large area of porous medium
and negligible boundary effects are fulfilled, the
interdendritic flow follows Darcy’s law.28 Therefore,
the pressure gradient rp is proportional to the flow
velocity vector �v:

rp ¼ l
K

�v: ð6Þ

Here, l is the (dynamic) viscosity and K is the per-
meability. The dendritic structure determined by
phase-field simulations follows the assumption of a
symmetric array of dendrites. Therefore, a periodic
boundary condition can be used to calculate numeri-
cally the fluid flow in a specific symmetric volume.

The calculations are carried out by using the
Lattice-Boltzmann method29 or alternatively the
CFD software ANSYS FLUENT. As the velocities
and characteristic lengths are very small, in the
order of 10�8 m/s and 10�5 m, respectively, a lami-
nar, steady flow can be assumed in both models.

ANSYS FLUENT solves continuity Eq. 7 and
momentum Eq. 8 equations on a finite volume grid:

@q
@t

þr q�vð Þ ¼ 0 ð7Þ

��s ¼ lD r�vþr�vT
� �

� 2

3
r �v��eð Þ

� �
: ð8Þ

Here, q is the melt density, ��s the stress tensor, lD the
dynamic viscosity, and ��e the unity tensor. Solving
these equations numerically has been proven valid in
many cases, especially considering a laminar, steady
fluid flow. Analogous to the Lattice-Boltzmann
model, a periodic flow perpendicular to the primary
dendrites is being assumed. Due to the high geo-
metric complexity of the dendritic structure, a stair
step grid is generated including only cells above a
specific fraction liquid. This specific fraction liquid
has been chosen in a manner in which the average
fraction liquid is being conserved.

The Lattice-Boltzmann method, however, is foun-
ded on particle interaction on a microscopic and a
mesoscopic level. It can be derived from the lattice gas
automata (LGA) on the approach of fluid or gas as a
big number of randomly moving particles that allows
the use of Navier–Stokes equations on a macroscopic
scale.30 A transformation of the particles into a sin-
gle-particle distribution function results in the lattice
Boltzmann equation (LBE). Several different LBE

models denoted as DdQq exist, where d refers to the
dimension and q to the amount of velocity direc-
tions.31 The following study uses the LBE model
D3Q19, a 3D space with 19 orthogonal velocity vec-
tors shown in Fig. 3. Between the several existing
cubic models, it is considered to combine both a high
computational reliability and efficiency, thereby
promising consistent results.30

For athermal fluids, the equilibrium distribution
function introduced by He and Luo can be applied
for D3Q19:29

f eqi ¼ qwi 1 þ 3

c2
ei � uþ 9

2c4
ei � uð Þ2� 3

2c2
u � uð Þ

� �
:

ð9Þ

The function depends on the weighting factor wi,
the discrete velocity ei, and the lattice speed c.
Hereby is lattice speed, the quotient of the lattice
constant and the time step: c ¼ dx=dt. The weighting
factor and the set of discrete velocities vary with the
respective model; in the case of D3Q19, they are
defined as follows. The lattice structures with the
discrete velocity vectors ei are shown in Fig. 3.30

wi ¼
1=3 i = 0 rest particle
1=18 i = 1,2, . . . 6; group I
1=36 i = 7,8; . . .18; group II

:

8
<

: ð11Þ

This LBG model does not require a scattered matrix
but uses a quasi-linear LBE variation. This implies
a change from a multi-to a single-time relaxation

ei ¼
ð0; 0; 0Þ i = 0 rest particle
ð�1; 0; 0Þc; ð0; �1; 0Þc; ð0; 0; �1Þc i = 1,2, . . . 6; group I
ð�1; �1; 0Þc; ð0; �1; �1Þc; ð�1; 0; �1Þc i = 7,8; . . . 18; group II

8
<

: ð10Þ

Fig. 3. Lattice structure of the D3Q19 (Ref. 29).
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that gives a fixed time scale for all modes. The
individual particle motion is neglected; the particles
instead follow an ensemble average.27,32 As the
requirements of mass and momentum conservation
are no longer guaranteed through sum rules of the
formerly scattered matrix, local equilibrium has to
be imposed by the definition of the local density q
(12) and momentum q�u (13) as particle velocity
moments of the distribution function fi.

27 Eq. 12
enables us to step back from a discrete microscopic
velocity to a continuous macroscopic velocity, such
as the fluid motion.33

q ¼
XN

i¼0

fi ð12Þ

q�u ¼
XN

i¼0

fiei: ð13Þ

The discretization in space and time allows the fit-
ting of the LBEs in the collision model of Bhatna-
gar-Gross-Krook (BGK), resulting in the lattice
Bhatnagar-Gross-Krook (LBGK) approximation for
the contribution function fi:

fi xþ ei; tþ 1ð Þ � fi x; tð Þ ¼ � 1

s
fi x; tð Þ � f eqi x; tð Þ
� �

:

ð14Þ

Hereby, fi
eq is the equilibrium value and the char-

acteristic time s ¼ k=dt, with k the relaxation time.
The LBGK model has become widely used due to its
easy implementation and numerical effectiveness.
In Eq. 14, two steps are implemented, equating
streaming with collision. While in the streaming
step the distribution function fi moves to the next
lattice place, the collision step relaxes fi toward fi

eq.
Both the step of streaming and the collision of the
fluid particles have to be separately approached to
solve the LBGK Eq. 14.33 Although the collision
step is entirely local, the streaming step is consis-
tent. The simulation of solid boundaries follows the
bounce back condition where particles are reversely
bounced back from the wall points. The bounce back
boundary condition is integrated in the collision
step.

RESULTS

The original results from the MICRESS� simu-
lations comprise precise fraction liquid data for all
grid cells. For simulation of fluid flow, the fraction
liquid information had to be reduced to zero or one
in each cell. This was achieved by using a threshold
value for the fraction liquid close to 0.5 below which
the cell was assumed to be completely solid and
otherwise completely liquid. This threshold value
was chosen such that the total fraction liquid in the
whole simulation domain was conserved. During
this procedure, all TiN particles that were not in

contact with the fcc dendrite were converted into
liquid phase because they moved with the melt flow
and such did not contribute to the pressure drop.

Figure 4 illustrates the smallest representative
domain for simulation of fluid flow across the mushy
zone when a symmetric structure of the dendrite
network is assumed. Accordingly, the computa-
tional domain of the phase-field simulations had to
be doubled by mirroring in the x-direction.

With the described procedures, according to the
value of k1 in the phase-field simulation, cubic
domains with a height of 1000 cells and base areas
between 50 9 25 and 250 9 125 cells with a cell size
of 1 lm3 were obtained that comprise a sharp
interface between solid and liquid. These were
directly used as representative domains for CFD
calculation of the permeability of the mushy zone for
different temperature and primary spacing.

The presented equations and considerations lead
to the velocities in x-, y-, and z-direction. As the
general stream direction is assumed normal to the
primary dendrite arms (Fig. 5), the velocity in the x-
direction is the decisive factor. The permeability
coefficient represents a characteristic value that
does not require additional information of the
internal structure of the porous media; only the
velocity’s x-component on the periodic faces of the
computational domain is crucial. The velocities
increase near the dendritic solidified structure as
the flow cross section becomes smaller.

To check the accuracy of the results, some of the
CFD calculations were done by using both ANSYS
FLUENT and the Lattice-Boltzmann method. Fur-
thermore, the grid resolution was doubled (‘‘fine’’
resolution, Dx = 0.5 lm) to reduce discretization
errors. A very high conformity of the results proved
evidence of correctness and applicability of both
approaches. Figure 6 shows the average flow veloc-
ities obtained with the different methods and
resolutions.

Therefore, for the further simulation, the average
velocities (v) at the left border of the mesh grid
obtained by using the Lattice-Boltzmann method and

Fig. 4. Symmetry of the dendrite array assumed for fluid flow
simulation.
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the coarse grid were identified as representative for
the velocity trend. With a viscosity of l¼ 0:009 Pa � s

and a pressure gradient of rp ¼ 200Pa=m, the per-
meability is presented in Eq. 15:

kx ¼
l � vmw

rp
m2
� �

: ð15Þ

Due to the dendritic structure including the sec-
ondary arms, the fraction liquid presents a strong
fluctuation along the z-coordinate. Therefore, the

liquid fractions as well as the velocity are averaged
over the distance of two secondary dendrite arm
spacings (k2).

Calculation of fluid flow was done for the five
phase-field simulations for k1 = 50, 100, 150, 200,
and 250 lm which are shown in Fig. 2. For each
case, the results at 4–12 different intermediate
output times were selected to span the temperature
range between the dendrite tip and the lowest
temperature reached in each phase-field simulation
(Fig. 7). Note that for large values of k1, only infor-
mation for higher temperatures could be obtained
due to the high computation times of the corre-
sponding phase-field simulations.

To allow for a comparison of the findings to
existing empirical relations, the simulated perme-
ability values also have been plotted as a function of
the liquid fraction (Fig. 8). Although for
d2 = 100 lm, d3 = 150 lm, d4 = 200 lm, and
d5 = 250 lm, the differences are only small, for the
lowest value of k1 (d1 = 50 lm), considerably higher
values of the permeability are obtained. This can be
explained with the mostly cellular morphology
obtained under these conditions (Fig. 2).

The permeability as a function of fraction solid
can be approximated by the following relation,
which has been obtained empirically (Fig. 8):

kx ¼
10�10:3 � fL � d0:6�ð0:9�fLÞ

i 0:3 � fL � tv

10�5:8 � fL
1�fL

0:7 � 4
	 


� 10�4 þ di

10

	 

tv � fL � 1

8
<

: :

ð16Þ

Fig. 6. Comparison between left: ANSYS FLUENT and the Lattice-Boltzmann method, right: normal and double grid resolutions for a simulation
time of 20 s and k1 = 150 lm.

Fig. 5. Representation of the 3D flow field around the dendrite arms.
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The transition between the steep curve at high
fraction liquid values and the continuous descent in
the lower fraction liquid region can be related to the
transition between the free growth of the dendrite
tip and a restricted growth once the dendrite side
branches interact with the neighboring dendrite.
Not only the temperature for this transition (as can
be clearly seen in Fig. 2) but also the corresponding
fraction liquid value tv is found to vary with the
primary dendrite arm spacing:

tv ¼ 3194 � d2
i � 7:481 � di þ 0:888: ð17Þ

DISCUSSION

It is interesting to compare the results of the
current study with well-established empirical rela-
tions that are frequently used for mesoscopic or
macroscopic simulation of fluid flow in semisolid
regions (e.g., for predicting freckles, microporosity,

or hot cracking in different types of casting).
Figure 9 puts our results in contrast with the
equations presented by Madison et al.18 and Poirier
et al.17 For all three cases, the curves are shown for
k1 = 100, 150, 200, and 250 lm (d2–d5), plotted as a
function of the fraction liquid fL.

Although there is very good agreement for the
cross-permeability curves for intermediate values of
k1 (150–200 lm) and the fraction liquid range below
0.65, there are strong deviations otherwise. Most
striking is the steep decay of the cross-permeability
curve in the current results occurring already at
high values of fL (>0.85), whereas it was predicted
by Poirier for the range 0.65< fL< 0.75.17 The
decay is attributed to the transition between free

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

Fraction Liquid

P
er

m
ea

bi
lit

y 
[m

2 ]

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

10
-11

Fraction Liquid

P
er

m
ea

bi
lit

y 
[m

2 ]

Fig. 8. Averaged permeability for different primary spacings k1 as a function of liquid fraction. Approximation curves according to Eq. 16 have
been included.

Fig. 7. Averaged permeability for different primary spacings k1 as a
function of temperature.
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Fig. 9. Permeability curves comparing Madison et al.,18 Poirier,17
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(k1 = 250 lm), followed by d4 (k1 = 200 lm), d3 (k1 = 150 lm), and
d2 (k1 = 100 lm)).
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growth in the dendrite tip region and restricted
growth below and (at least under these conditions)
is wrongly predicted by the empirical relation of
Poirier by up to a factor of 100 for high fraction
liquid values. For prediction of fluid-flow phenom-
ena in the upper part of the mushy zone (e.g., the
initiation of freckles during electro-slag remelting
(ESR)),2 this can have significant consequences.

The second strong difference is the much smaller
dependency of the cross-permeability on k1 in our
study. This can be easily explained by the fact that
in our phase-field simulations, the primary dendrite
distance k1 was modified ‘‘artificially’’ without
changing the local thermal parameters (tempera-
ture gradient and cooling rate). To the contrary, the
formulae by Poirier17 and Madison18 assume the
change of k1 to be attributed to a change of the local
thermal condition (i.e., they assume that the den-
drites have selected their primary distance accord-
ing to the local conditions). Thus, no similarity
should be expected with respect to the k1-depen-
dency of the cross-permeability because the main
effect, which is the change of k2 due to an altered
local solidification time, has not been included in
our study. Direct comparisons of the datasets should
only be made for average (stable) values of the pri-
mary distance (k1 = 150–200 lm).

Although for application a representation as a
function of temperature (Fig. 7) may be most prac-
tical, plotting permeability in terms of the interfa-
cial surface area (ISA) has been proposed as a more
comprehensive description.34 Whether the ISA,
which can be easily evaluated from simulated
microstructures, provides a suitable metric for pre-
diction of permeability will be the subject of future
research.

CONCLUSION AND OUTLOOK

The coupling between the 3D phase-field simula-
tion of multicomponent alloy microstructures by
using MICRESS� and fluid-flow simulations carried
out with ANSYS FLUENT or the Lattice-Boltzmann
method presents an important contribution to the
still developing and improving field of computa-
tional simulation of casting processes in an ICME
framework. Besides the methodological aspects, the
study also gives new knowledge and insight into the
cross-permeability of the interdendritic zone and
points out the opportunities offered by simulation
approaches. By direct simulation of the dendrite
morphology and its change downward through the
mushy zone and by a systematic variation of the
primary dendrite distance in the phase-field simu-
lations, the dependency of the effective cross-per-
meability on the fraction liquid and the effect of the
primary dendrite distance could be quantitatively
evaluated for the technical Ni-base alloy 718 and
compared with empirical relations from the
literature.

The study not only presents a methodology to link
different software tools and exchange data between
them but also proposes a way to aggregate detailed
results on the microscale and transform them by
systematic variation and averaging into empirical
laws that can be applied on the macroscale. The
path is now open, and more dimensions can be
included by variation of other parameters like
cooling rate, temperature gradient, or alloy compo-
sition to obtain more comprehensive description of
the permeability and other properties of the mushy
zone.
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