Skip to main content
Log in

The correlation between the electronic structure and elastic properties of nanolaminates

  • Functional Coatings
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Upon reviewing the correlation between the electronic structure and the elastic properties of nanolaminates based on the previously published ab-initio data, the authors suggest that nanolaminates can be described as interleaved layers of high and low electron density. Mn+1AXn phases (space group P63/mmc) can be characterized by stacking of layers of high (MX) and low (A) electron density. Furthermore, the Mn+1AXn phases possess the bulk-modulus-to-C44 ratio of 1.2–1.7, which in turn gives rise to a combination of ceramic and metallic properties. This design criterion is not only limited to the Mn+1AXn phases, but it can be found in many other phases crystallizing in the same space group (ternary phosphides, Al3BC3, Zr2Al3C5, and W2B5 based phases) and the related space group P6/mmm (Yn+1Co3n+5B2n) as well as in the phases of the cubic \( Pm\overline 3 m \) symmetry (perovskite borides and nitrides).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Music, Z. Sun, and J.M. Schneider, “Alternating Covalent-Ionic and Metallic Bonding in Perovskite Borides Studied Using Ab Initio Methods,” Phys. Rev. B, 71(5) (2005), p. 052104.

    Article  CAS  Google Scholar 

  2. M.W. Barsoum, “The MAX Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates,” Prog. Solid State Chem., 28(1–4) (2000), pp. 201–281.

    Article  CAS  Google Scholar 

  3. M.W. Barsoum and T. El-Raghy, “The MAX Phases: Unique New Carbide and Nitride Materials,” Amer. Sci., 89(4) (2001), pp. 334–343.

    Article  Google Scholar 

  4. H. Nowotny, “Strukturchemie Einiger Übergangsmetalle Mit Den Elementen C, Si, Ge, Sn,” Prog. Solid State Chem., 2 (1970), pp. 27–70.

    Article  Google Scholar 

  5. M.W. Barsoum and T. El-Raghy, “Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2,” J. Amer. Cer. Soc., 79(7) (1996), pp. 1953–1956.

    Article  CAS  Google Scholar 

  6. M.W. Barsoum, T. El-Raghy, and L.U.J.T. Ogbuji, “Oxidation of Ti3SiC2 in Air,” J. Electrochem. Soc., 144(7) (1997), pp. 2508–2516.

    Article  CAS  Google Scholar 

  7. T. El-Raghy et al., “Processing and Mechanical Properties of Ti3SiC2: II, Effect of Grain Size and Deformation Temperature,” J. Amer. Cer. Soc., 82(10) (1999), pp. 2855–2860.

    Article  CAS  Google Scholar 

  8. Z. Sun, Y. Zhou, and M. Li, “Oxidation Behaviour of Ti3SiC2-Based Ceramic at 900–1300°C in Air,” Corro. Sci., 43(6) (2001), pp. 1095–1109.

    Article  CAS  Google Scholar 

  9. 3-One-2 LLC, Voorhees, NJ, www.3one2.com.

  10. Kanthal, an affiliate of Sandvic AB, Sandviken, Sweden, www.kanthal.com.

  11. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136(3B) (1964), pp. B864–B871.

    Article  Google Scholar 

  12. G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Open-Shell Transition Metals,” Phys. Rev. B, 48(17) (1993), pp. 13115–13118.

    Article  CAS  Google Scholar 

  13. G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B, 49(20) (1994), pp. 14251–14269.

    Article  CAS  Google Scholar 

  14. G. Kresse and Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method,” Phys. Rev. B, 59(3) (1999), pp. 1758–1775.

    Article  CAS  Google Scholar 

  15. J.P. Perdew et al., “Atoms, Molecules, Solids, and Surfaces: Application of the Generalized Gradient Approximation for Exchange and Correlation,” Phys. Rev. B, 46(11) (1992), pp. 6671–6687.

    Article  CAS  Google Scholar 

  16. P. Blaha et al., “Full-Potential, Linearized Augmented Plane-Wave Programs for Crystalline Systems,” Comput. Phys. Commun., 59(2), (1990), pp. 399–415.

    Article  CAS  Google Scholar 

  17. H.J. Monkhorst and J.D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B, 13(12) (1976), pp. 5188–5192.

    Article  Google Scholar 

  18. F. Birch, J. Geophys. Res., 83(NB3) (1978), pp. 1257–1268.

    CAS  Google Scholar 

  19. L. Fast et al., “Elastic Constants of Hexagonal Transition Metals: Theory,” Phys. Rev. B, 51(24) (1995), pp. 17431–17438.

    Article  CAS  Google Scholar 

  20. A.Y. Liu and D.J. Singh, “Elastic Instability of BCC Cobalt,” Phys. Rev. B, 47(14) (1993), pp. 8515–8519.

    Article  CAS  Google Scholar 

  21. J.J. Nickl, K.K. Schweitzer, and P. Luxenberg, “Gas-Phase Deposit in Ti-Si-C System,” J. Less Common Metals, 26(3) (1972), p. 283.

    Google Scholar 

  22. T. Goto and T. Hirai, “Chemically Vapor Deposited Ti3SiC2,” Mat. Res. Bull., 22(9) (1987), pp. 1195–1201.

    Article  CAS  Google Scholar 

  23. J.-P. Palmquist et al., “Magnetron Sputtered Epitaxial Single-Phase Ti3SiC2 Thin Films,” Appl. Phys. Lett., 81(5) (2002), pp. 835–837.

    Article  CAS  Google Scholar 

  24. H. Högberg et al., “Growth and Characterization of MAX-Phase Thin Films,” Surf. Coat. Technol., 193(1–3) (2005), pp. 6–10.

    Article  CAS  Google Scholar 

  25. C. Walter, et al., “Towards Large Area Deposition of Cr2AIC on Steel,” Thin Solid Films, 515(2) (2006), pp. 389–393.

    Article  CAS  Google Scholar 

  26. J.-P. Palmquist et al., “Mn+1AXn Phases in the Ti-Si-C System Studied by Thin-Film Synthesis and Ab Initio Calculations,” Phys. Rev. B, 70(16) (2004), p. 165401.

    Google Scholar 

  27. J.M. Schneider et al., “Ab Initio Calculations and Experimental Determination of the Structure of Cr2AlC,” Solid State Commun., 130(7), (2004), pp. 445–449.

    Article  CAS  Google Scholar 

  28. J.M. Schneider, R. Mertens, and D. Music, “Structure of V2AlC Studied by Theory and Experiment,” J. Appl. Phys., 99(1) (2006), p. 013501.

    Article  CAS  Google Scholar 

  29. T. Joelsson et al., “Single-Crystal Ti2AlN Thin Films,” Appl. Phys. Lett., 86(11) (2005), p. 111913.

    Article  CAS  Google Scholar 

  30. C. Walter et al., “Towards Large Area MAX Phase Coatings on Steel,” Steel Res. Int., 76(2/3) (2005), pp. 225–228.

    CAS  Google Scholar 

  31. J. Emmerlich et al., “Growth of Ti3SiC2 Thin Films by Elemental Target Magnetron Sputtering,” J. Appl. Phys., 96(9) (2004), pp. 4817–4826.

    Article  CAS  Google Scholar 

  32. M. Beckers et al., “Microstructure and Nonbasal-Plane Growth of Epitaxial Ti2AlN Thin Films,” J. Appl. Phys., 99(3) (2006), p. 034902.

    Google Scholar 

  33. R. Mertens et al., “Effect of the Composition on the Structure of Cr-Al-C Investigated by Combinatorial Thin Film Synthesis and Ab Initio Calculations,” Adv. Eng. Mater., 6(11) (2004), pp. 903–907.

    Article  CAS  Google Scholar 

  34. O. Wilhelmsson et al., “Deposition of Ti2AlC and Ti3AlC2 Epitaxial Films by Magnetron Sputtering,” Appl. Phys. Lett., 85(6) (2004), p. 1066.

    Article  CAS  Google Scholar 

  35. H. Högberg et al., “Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-Phase Thin Films Grown by Magnetron Sputtering,” J. Mater. Res., 20(4) (2004), pp. 779–782.

    Article  CAS  Google Scholar 

  36. O. Wilhelmsson et al., “Deposition and Characterization of Ternary Thin Films within the Ti-Al-C System by DC Magnetron Sputtering,” J. Cryst. Growth, 291(1) (2006), pp. 290–300.

    Article  CAS  Google Scholar 

  37. M. Beckers et al., “Phase Stability of Epitaxially Grown Ti2AlN Thin Films,” Appl. Phys. Lett., 89(7) (2006), 074101.

    Google Scholar 

  38. R. Ahuja et al, “Electronic Structure of Ti3SiC2,” Appl. Phys. Lett., 76(16) (2000), pp. 2226–2228.

    Article  CAS  Google Scholar 

  39. B. Holm, R. Ahuja, and B. Johannson, “Ab Initio Calculations of the Mechanical Properties of Ti3SiC2,” Appl. Phys. Lett., 79(10) (2001), pp. 1450–1452.

    Article  CAS  Google Scholar 

  40. B. Holm et al., “Theory of the Ternary Layered System Ti-Al-N,” Appl. Phys. Lett., 91(12) (2002), pp. 9874–9877.

    CAS  Google Scholar 

  41. Z. Sun et al., “Structure and Bulk Modulus of M2AlC (M = Ti, V and Cr),” Appl. Phys. Lett., 83(5) (2003), pp. 899–901.

    Article  CAS  Google Scholar 

  42. Z. Sun et al., “Calculated Elastic Properties of M2AlC (M=Ti, V, Cr, Nb and Ta),” Solid State Commun., 129(9) (2004), pp. 589–592.

    Article  CAS  Google Scholar 

  43. Z. Sun et al., “Bonding and Classification of Nanolayered Ternary Carbides,” Phys. Rev. B, 70(9) (2004), p. 092102.

    Google Scholar 

  44. Z. Sun et al., “Theoretical Investigation of the Bonding and Elastic Properties of Nanolayered Ternary Nitrides,” Phys. Rev. B, 71(19) (2005), p. 193402.

    Article  CAS  Google Scholar 

  45. D. Music, Z. Sun, and J.M. Schneider, “Electronic Structure of Sc2AC (A = Al, Ga, In, Tl),” Solid State Commun., 133(6) (2005), pp. 381–383.

    Article  CAS  Google Scholar 

  46. D. Music, Z. Sun, and J.M. Schneider, “Ab Initio Study of Nb2SC and Nb2S2C: Differences in Coupling between the S and Nb-C Layers,” Solid State Commun., 137(6) (2006), pp. 306–309.

    Article  CAS  Google Scholar 

  47. D. Music et al., “Coupling in Nanolaminated Ternary Carbides Studied by Theoretical Means: The Influence of Electronic Potential Approximations,” Phys. Rev. B, 73(13) (2006), p. 134117.

    Article  CAS  Google Scholar 

  48. J.-Y. Wang and Y.-C. Zhou, “Polymorphism of Ti3SiC2 Ceramic: First-Principles Investigations,” Phys. Rev. B, 69(14) (2004), p. 144108.

    Article  CAS  Google Scholar 

  49. J. Wang and Y. Zhou, “Dependence of Elastic Stiffness on Electronic Band Structure of Nanolaminated M2AlC (M=Ti, V, Nb, and Cr) Ceramics,” Phys. Rev. B, 69(21) (2004), p. 214111.

    Article  CAS  Google Scholar 

  50. G. Hug and E. Fries, “Full-Potential Electronic Structure of Ti2AlC and Ti2AlN,” Phys. Rev. B, 65(11) (2002), p. 113104.

    Article  CAS  Google Scholar 

  51. G. Hug, M. Jaouen, and M.W. Barsoum, “X-Ray Absorption Spectroscopy, EELS, and Full-Potential Augmented Plane Wave Study of the Electronic Structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC,” Phys. Rev. B, 71(2) (2005), p. 024105.

    Article  CAS  Google Scholar 

  52. J.A. Warner et al., “Ab Initio Calculations for Properties of MAX Phases Ti2TlC, Zr2TlC, and Hf2TlC,” Appl. Phys. Lett., 88(10) (2006), p. 101911.

    Article  CAS  Google Scholar 

  53. D. Music, Z. Sun, and J.M. Schneider, “Structure and Bonding of M2SbP (M = Ti, Zr, Hf),” Phys. Rev. B, 71(9) (2005), p. 092102.

    Article  CAS  Google Scholar 

  54. J. Wang et al., “First-Principles Prediction of Low Shear-Strain Resistance of Al3BC3: A Metal Borocarbide Containing Short Linear BC2 Units,” Appl. Phys. Lett., 89(2) (2006), p. 021917.

    Article  CAS  Google Scholar 

  55. J. Wang et al., “First-Principles Investigation on Chemical Bonding and Bulk Modulus of the Ternary Carbide Zr2Al3C5,” Phys. Rev. B, 72(5) (2005), p. 052102.

    Article  CAS  Google Scholar 

  56. D. Music and J.M. Schneider, “Electronic Structure and Elastic Properties of Yn+1Co3n+5B2n (n = 1, 2, 3, ∞),” J. Phys.: Condens. Matter, 18(16) (2006), pp. 4071–4076.

    Article  CAS  Google Scholar 

  57. D. Music and J.M. Schneider, “Influence of Valence Electron Concentration on Elastic Properties of RRh3B (R=Y, Zr, and Nb),” Appl. Phys. Lett., 89(12) (2006), p. 121914.

    Article  CAS  Google Scholar 

  58. D. Music and J.M. Schneider, “Elastic Properties of MFe3N (M = Ni, Pd, Pt) Studied by Ab Initio Calculations,” Appl. Phys. Lett., 88(3) (2006), p. 031914.

    Article  CAS  Google Scholar 

  59. D.M. Teter, “Computational Alchemy: The Search for New Superhard Materials,” MRS Bull., 23(1) (1998), pp. 22–27.

    CAS  Google Scholar 

  60. L. Vitos, P.A. Korzhavyi, and B. Johansson, “Stainless Steel Optimization from Quantum Mechanical Calculations,” Nat. Mater., 2(1) (2002), pp. 25–28.

    Article  CAS  Google Scholar 

  61. C. Kittel, Introduction to Solid State Physics (New York: John Wiley and Sons, 1996), pp. 59, 91, 92.

    Google Scholar 

  62. Z. Sun et al., “Ab Initio Study of M2AlN (M = Ti,V,Cr),” J. Phys.: Condens. Matter, 17(2) (2005), pp. L15–L19.

    Article  CAS  Google Scholar 

  63. C.M. Fang et al., “General Trend of the Mechanical Properties of the Ternary Carbides M3SiC2 (M=Transition Metal),” Phys. Rev. B, 74(5) (2006), p. 054106.

    Article  CAS  Google Scholar 

  64. Z. Sun et al., “Electronic Origin of Shearing in M2AC (M=Ti, V, Cr, A=Al, Ga),” J. Phys.: Condens. Matter, 17(46) (2005), pp. 7169–7176.

    Article  CAS  Google Scholar 

  65. D. Music et al., “Ab Initio Study of Basal Slip in Nb2AlC,” J. Phys.: Condens. Matter, 18(17) (2006), pp. 4389–4395.

    Article  CAS  Google Scholar 

  66. D. Music et al., “Electronic Structure and Shearing in Nanolaminated Ternary Carbides,” Solid State Commun., 139(4) (2006), pp. 139–143.

    Article  CAS  Google Scholar 

  67. T. Liao, J. Wang, and Y. Zhou, “Deformation Modes and Ideal Strengths of Ternary Layered Ti2AlC and Ti2AlN from First-Principles Calculations,” Phys. Rev. B, 73(21) (2006), p. 214109.

    Article  CAS  Google Scholar 

  68. H. Boller, “Gemischite Pnictide Mit Geordnetem TiP-Typ,” Monatsh. Chem., 104(1) (1973), pp. 166–171.

    Article  CAS  Google Scholar 

  69. H. Hillebrecht and F.D. Meyer, “Synthesis, Structure, and Vibrational Spectra of Al3BC3, a Carbidecarboborate of Aluminum with Linear (C=B=C)(5-) Anions,” Angew. Chem. Int. Ed. Engl., 35(21) (1996), pp. 2499–2500.

    Article  CAS  Google Scholar 

  70. C. Jardin et al., “First-Principles Study of Ternary Metal Borocarbide Compounds Containing Finite Linear BC2 Units,” J. Solid State Chem., 176(2) (2003), pp. 609–614.

    Article  CAS  Google Scholar 

  71. V.M. Mathew, C.S. Menon, and K.P. Jayachandran, “Third-Order Elastic Constants and Pressure Derivatives of the Second-Order Elastic Constants of Hexagonal Boron Nitride,” J. Mater. Sci., 37(24) (2002), pp. 5237–5240.

    Article  CAS  Google Scholar 

  72. C.S.G. Cousins and M.I. Heggie, “Elasticity of Carbon Allotropes. III. Hexagonal Graphite: Review of Data, Previous Calculations, and a Fit to a Modified Anharmonic Keating Model,” Phys. Rev. B, 67(2) (2003), p. 024109.

    Article  CAS  Google Scholar 

  73. A. Pohl, R. Telle, and G. Petzow, “Growth Behaviour and Subgrain Structure of W2B5,” Z. Metallkd., 86(2) (1995), pp. 148–151.

    CAS  Google Scholar 

  74. R. Telle et al., “Boride-Based Nano-Laminates with MAX-Phase-Like Behaviour,” J. Solid State Chem., 179(9) (2006), pp. 2850–2857.

    Article  CAS  Google Scholar 

  75. C. Chacon and O. Isnard, “The Structural and Magnetic Properties of Yn+1Co3n+5B2n Compounds Investigated by Neutron Diffraction,” J. Phys.: Condens. Matter, 13(25) (2001), pp. 5841–5851.

    Article  CAS  Google Scholar 

  76. Z. Arnold et al., “Pressure Induced Changes of Magnetic Phase Transitions in RCo4B Compounds,” J. Magn. Magn. Mater., 262(3) (2003), pp. 382–388.

    Article  CAS  Google Scholar 

  77. F. Givord et al., “The Cerium Magnetic Form Factor and Diffuse Polarization in CeRh3B2 as Functions of Temperature,” J. Phys.: Condens. Matter, 16(8) (2004), pp. 1211–1230.

    Article  CAS  Google Scholar 

  78. M. Dubman et al., “Magnetic Ordering and Spin-Reorientation Transitions in TbCo3B2,” Phys. Rev. B, 72(2) (2005), p. 024446.

    Article  CAS  Google Scholar 

  79. P. Rogl and L. Delong, “New Ternary Transition Metal Borides Containing Uranium and Rare Earth Elements,” J. Less-Common Met., 91(1) (1983), pp. 97–106.

    Article  CAS  Google Scholar 

  80. R.E. Schaak et al., “Formation of Transition Metal Boride and Carbide Perovskites Related to Superconducting MgCNi3,” J. Solid State Chem., 177(4–5) (2004), pp. 1244–1251.

    Article  CAS  Google Scholar 

  81. H. Takei et al., “Magnetic and Superconducting Properties of the Cubic Perovskite YRh3B,” J. Less-Common Met., 125 (1986), pp. 233–237.

    Article  CAS  Google Scholar 

  82. T. He et al., “Superconductivity in the Non-Oxide Perovskite MgCNi3,” Nature, 411(6833) (2001), pp. 54–56.

    Article  CAS  Google Scholar 

  83. D. Music, R. Ahuja, and J.M. Schneider, “Electronic Structure and Lattice Dynamics of CaPd3B Studied by First-Principles Methods,” Phys. Lett. A, 356(3) (2006), pp. 251–254.

    Article  CAS  Google Scholar 

  84. S. Mollah, “The Physics of the Non-Oxide Perovskite Superconductor MgCNi3,” J. Phys.: Condens. Matter., 16(43) (2004), pp. R1237–R1276.

    Article  CAS  Google Scholar 

  85. T. Shishido et al., “Solid Solution Range of Boron, Microhardness and Oxidation Resistance of the Peroviskite Type ReRh3Bx (Re=Gd, Y, Sc) Compounds,” J. Alloy Comp., 291(1–2) (1999), pp. 52–56.

    Article  CAS  Google Scholar 

  86. J. von Appen and R. Dronskowski, “Predicting New Ferromagnetic Nitrides from Electronic Structure Theory: IrFe3N and RhFe3N,” Angew. Chem. Int., 44(8) (2005), pp. 1205–1210.

    Article  CAS  Google Scholar 

  87. H.H. Stadelmaier and A.C. Franker, “Nitrides of Iron with Nickel, Palladium, and Platinum,” Trans. Metall. Soc. AIME, 218(3) (1960), pp. 571–572.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Music, D., Schneider, J.M. The correlation between the electronic structure and elastic properties of nanolaminates. JOM 59, 60–64 (2007). https://doi.org/10.1007/s11837-007-0091-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0091-7

Keywords

Navigation