Skip to main content
Log in

Key methods for developing single-wall nanotube composites

  • Overview
  • Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Single-wall nanotubes (SWNTs), one of the newest of reinforcements for composite materials development, are heralded as having the highest strength features of any reinforcement. The development of composite materials is seen as a good first step toward taking advantage of the structural, electrical, and thermal properties of SWNTs, but processing SWNTs with polymers, metals, and ceramics pose new challenges because of their nanometer size and features. Recently, advances have been made toward developing their mechanical and electrical properties, and initial concerns of composite processing in polymers have been overcome. The potential for conducting polymers is at hand, and the strength features of these new composites are increasing with each new process development. This paper identifies some of the key methods for developing single-wall nanotubereinforced polymer composites for a range of applications and focuses on producing nearterm multifunctional materials for structural and electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rinzler et al., Appl. Phys., A 67 (1998), p. 29.

    Google Scholar 

  2. Private conversation with Richard Smalley, Rice University, (June 2000).

  3. J.P. Salvetat et al., Phys. Rev. Lett., 82 (1999), p. 944.

    Article  CAS  Google Scholar 

  4. H.D. Wagner et al., Appl. Phys. Lett., 72 (1998), p. 188.

    Article  CAS  Google Scholar 

  5. P.M. Ajayan et al., Adv. Mater., 12 (2000), p. 750.

    Article  CAS  Google Scholar 

  6. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature (London), 381 (1996), p. 678.

    Article  CAS  Google Scholar 

  7. G. Overney, W. Zhong, and D. Tomanek, Z. Phys., D27 (1993), p. 93.

    Google Scholar 

  8. B.I. Yakobson, C.J. Brabec, and J. Bernhole, Phys. Rev. Lett., 76 (1996), p. 2511.

    Article  CAS  Google Scholar 

  9. O. Lourie, D.M. Cox, and H.D. Wagner, Phys. Rev. Lett., 81 (1998), p. 1638.

    Article  CAS  Google Scholar 

  10. E.W. Wang, P.E. Sheehan, and C.M. Lieber, Science, 277 (1998), p. 1971.

    Article  Google Scholar 

  11. J.-P. Salvetat et al., Phys. Rev. Lett., 82 (1999), p. 944.

    Article  CAS  Google Scholar 

  12. M.F. Yu et al., Phys. Rev. Lett., 84 (2000), p. 5552.

    Article  CAS  Google Scholar 

  13. Private communication with Deepak Srivastava, NASA-Ames Research Center, Moffett Field, CA. (August 1999).

  14. P.M. Ajayan et al., Adv. Mater, 12 (2000), p. 750.

    Article  CAS  Google Scholar 

  15. R. Birringer, Mater. Sci. and Eng., A117 (1989), p. 33.

    Article  CAS  Google Scholar 

  16. J.M. Margolis, Conductive Polymers and Plastics (London: Chapman and Hall, Ltd., 1989).

    Google Scholar 

  17. S.C. Tjong and Y.Z. Meng, J. Appl. Polymer Sci., 72 (1999), p. 501.

    Article  CAS  Google Scholar 

  18. M.W. Weimer and H. Chen, J. Amer. Chem. Soc., 121 (1999), p. 1615.

    Article  CAS  Google Scholar 

  19. V.V. Kozey et al., J. Mater. Res., 10 (1995), p. 1044.

    CAS  Google Scholar 

  20. R.H. Hurt and Z.-Y. Chen, Phys. Today (March 2000), p. 39.

  21. K.K. Chawla, Composite Materials, 2nd ed. Part I (New York: Springer, 1998), p. 101.

    Google Scholar 

  22. Calculation based on the stiffness and strength of SWNTs.

  23. J.N. Rossettos and M. Shishesaz, J. Appl. Mech., 54 (1987), p. 723.

    Article  Google Scholar 

  24. K. Lozano and E.V. Barrera, J. Polymer Sci. (in press).

  25. K. Lozano, J. Bonilla, and E.V. Barrera, J. Polymer Sci. (in press).

  26. P.M. Ajayan et al., Science, 265 (August 1994), p. 1212.

    Article  CAS  Google Scholar 

  27. P.M. Ajayan, P. Redlich, and M. Rühle, J. Microscopy, 185 (1997), p. 275.

    Article  CAS  Google Scholar 

  28. H.D. Wagner et al., Appl. Phys. Lett., 72 (1998), p. 188.

    Article  CAS  Google Scholar 

  29. O. Lourie, D.M. Cox, and H.D. Wagner, Phys. Rev. Lett., 81 (1998), p. 1638.

    Article  CAS  Google Scholar 

  30. O. Lourie and H.D. Wagner, Composites Sci. and Technol., 59 (1999), p. 975.

    Article  Google Scholar 

  31. O. Lourie and H.D. Wagner, J. Mater. Res., 13 (1998), p. 2418.

    CAS  Google Scholar 

  32. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett., 73 (1998), p. 1197.

    Article  CAS  Google Scholar 

  33. J.R. Woods et al., J. Phys. Chem. B, 103 (1999), p. 10388.

    Article  CAS  Google Scholar 

  34. S.A. Curran et al., Adv. Mater., 10 (1998), p. 1091.

    Article  CAS  Google Scholar 

  35. Private communication with Bill Kroft and Bradley Files at NASA-Johnson Space Center, Houston, TX (September 2000).

  36. L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett., 73 (1998), p. 3842.

    Article  CAS  Google Scholar 

  37. S.O. Friend and J.J. Barber, U.S. patent 5,611,964 (1997).

    Google Scholar 

  38. Z. Jia et al., Mater. Sci. and Eng., A271 (1999), p. 395.

    Article  CAS  Google Scholar 

  39. R. Andrews et al., Appl. Phys. Lett., 75 (1999), p. 1329.

    Article  CAS  Google Scholar 

  40. D. Walters et al., submitted to Chem. Phys. Lett.

  41. K. Lozano et al., Powder Materials: Current Research and Industrial Practices, ed. F.D.S. Marquis (Warrendale, PA: TMS, 1999), p. 333.

    Google Scholar 

  42. Private communication with B. Mayeaux, NASA Johnson Space Center, Houston, TX (September 2000).

  43. J. Sandler et al., Polymer, 40 (1999), p. 5967.

    Article  CAS  Google Scholar 

  44. K. Lozano et al., Powder Materials: Current Research and Industrial Practices, ed. F.D.S. Marquis (Warrendale, PA: TMS, 1999), p. 341.

    Google Scholar 

  45. Y. Chen et al., J. Mater. Res., 13 (1988), p. 2423.

    Article  Google Scholar 

  46. E.T. Mickelson et al., Chem. Phys. Lett., 296 (1998), p. 188.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact E.V. Barrera, Rice University, Department of Mechanical Engineering and Materials Science, P.O. Box 1892, Houston, Texas 77005-1892; (713) 348-6242; fax (713) 348-5423; e-mail ebarrera@rice.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera, E.V. Key methods for developing single-wall nanotube composites. JOM 52, 38–42 (2000). https://doi.org/10.1007/s11837-000-0197-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0197-7

Keywords

Navigation