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Recent developments in spectral stochastic methods for
the numerical solution of stochastic partial di�erential
equations

Anthony Nouy

Abstract Uncertainty quanti�cation appears today as a crucial point in numerous
branches of science and engineering. In the last two decades, a growing interest has
been devoted to a new family of methods, called spectral stochastic methods, for the
propagation of uncertainties through physical models governed by stochastic partial
di�erential equations. These approaches rely on a fruitful marriage of probability the-
ory and approximation theory in functional analysis. This paper provide a review of
some recent developments in computational stochastic methods, with a particular em-
phasis on spectral stochastic approaches. After a review of di�erent choices for the
functional representation of random variables, we provide an overview of various nu-
merical methods for the computation of these functional representations: projection,
collocation, Galerkin approaches... A detailed presentation of Galerkin-type spectral
stochastic approaches and related computational issues is provided. Recent develop-
ments on model reduction techniques in the context of spectral stochastic methods
are also discussed. The aim of these techniques is to circumvent several drawbacks
of spectral stochastic approaches (computing time, memory requirements, intrusive
character) and to allow their use for large scale applications. We particularly focus
on model reduction techniques based on spectral decomposition techniques and their
generalizations.
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1 Introduction

The numerical simulation of physical models, supported by the availability of increas-
ing computational resources, plays today a very signi�cant role in design processes or
in decision making which can have major consequences in economic or human terms.
Uncertainty quanti�cation and propagation in physical systems appear as a critical
path for the improvement of the prediction of their response. Obtaining reliable pre-
dictions requires a perfect control of the conceptual model. Upstream, this model must
be designed in order to accurately reproduce the observations or more speci�cally some
observable quantities of interest. Physical models, which are generally quite well mas-
tered within the deterministic framework, must then be supplemented by a relevant
modeling of uncertainties. Downstream, a numerical model and ad hoc resolution tech-
niques must be proposed in order to propagate uncertainties and to estimate their
impact on the response of the conceptual model.

Two types of uncertainties are generally distinguished: the intrinsic (or aleatoric)
uncertainties, associated with a natural variability of the considered physical phenom-
ena, and the epistemic uncertainties, which result from a lack of knowledge. Of course,
the latter ones are by nature reducible. However, due to the complexity of physical
phenomena, to the lack of observations or even to the necessity of providing simpli�ed
mathematical models, addressing epistemic uncertainties appears also essential in order
to improve the predictability of the model. The probabilistic framework is indisputably
the most well established way to model uncertainties, both from theoretical and prac-
tical points of views. In this context, the modeling of uncertainties consists in de�ning
a suitable probability space. For many physical problems, the conceptual model can
then be expressed in terms of stochastic partial di�erential equations (SPDEs).

Many numerical methods have been proposed for the resolution of SPDEs. The
mathematical framework for the analysis of the problem and the choice of a particular
numerical solution strategy depend on the nature of uncertainties, on the quantities
of interest to predict and on the expected accuracy of this prediction. A particular
class of problems concerns the case of stochastic di�erential equations or stochastic
partial di�erential equations driven by white noise [127,67,66,97,107]. Such problems,
which are not dealt with in this paper, concern numerous applications in physics (di�u-
sion theory...), signal processing (�ltering...), optimal control, �nancial mathematics...
Due to the complexity of the input noise, imposing to work in an in�nite dimensional
probability space, Monte-Carlo simulation technique appears as the most e�cient and
wide-spread numerical approach for solving such SPDEs. The lack of regularity of the
input noise requires the use of speci�c rules of calculus (e.g. Ito or Stratonovic calcu-
lus) and the derivation of speci�c approximation techniques for solving sample paths
(i.e. solving deterministic PDE associated with particular events). Let us also men-
tion methods based the resolution of deterministic PDEs governing the evolution of
functionals of the random solution (e.g. Fokker-Planck equation). The use of tradi-
tional approximation techniques for solving these PDEs is however limited by the high
dimensionality of the problem.

Another class of problems commonly encountered in physical applications concerns
the case where the random parameters and the solution of the problem have a �nite
variance [34,10,7,9,40,84]. This class of problems, on which we mainly focus in this
paper, occurs when random parameters of the model are represented by variables or
random processes (�elds) with �nice� regularity properties. The mathematical descrip-
tion of uncertainties a priori requires de�ning an in�nite dimensional probability space.



3

However, in numerous physical applications, uncertainty sources can be correctly mod-
eled with a �nite set of random variables. This is the case when uncertainties on the
model are characterized by a �nite set of real-valued random variables or stochastic
processes (�elds), the latter ones being reduced (or discretized) with ad hoc spectral
decomposition techniques (e.g. Karhunen-Loève). Then, in practice, one de�nes the
probabilistic content with a �nite set of random variables, de�ning a new �nite dimen-
sional probability space.
In this �nite-dimensional framework, numerous computational methods have been pro-
posed for the resolution of a stochastic problem, or more speci�cally for estimating
the probabilistic characterization of a quantity of interest. The choice of a speci�c
method depends on the desired accuracy of the prediction and on the nature of the
expected probabilistic information. In particular, if one is interested in �rst statistical
moments of the response (mean, variance,...), perturbation or direct integration meth-
ods (Monte-Carlo, Quadrature...) can be used. For the estimation of the probability of
particular events, direct integration techniques can still be used as long as the proba-
bility of the event remains su�ciently large. For the estimation of small probabilities,
speci�c methodologies, called reliability methods, are generally better adapted. This
last decade, a growing interest has been devoted to methods providing a complete
characterization of the response (probability law of the quantity of interest), which is
represented on a suitable functional expansion basis. These methods, usually named
spectral stochastic methods, were initiated by the work of Ghanem and Spanos [48].

An overview of the above mentioned techniques is given in section 2. The sub-
sequent sections mainly focus on spectral stochastic methods. Section 3 introduces
classical construction of functional basis for the representation of random variables.
In section 4, Galerkin-type spectral stochastic methods, which constitute a particular
approach to compute functional representations, are detailed. Issued from a pro�table
marriage of functional analysis and probability theory, these spectral stochastic meth-
ods rely on strong mathematical bases. They lead to highly accurate solutions and allow
a better control on numerical simulations: possible construction of a posteriori error
estimators, adaptive approximation. These methods seem to constitute one promising
way for the numerical simulation of SPDEs. However, several drawbacks slow down the
use of these techniques and their application to large scale problems: calculation time,
memory requirements, and their intrusive character, which requires a good knowledge
of the mathematical structure of the problem and the development of speci�c solvers
for a certain class of problems. In section 5, some recent developments on model reduc-
tion techniques are presented, in the context of spectral stochastic methods. Section 6
focuses on the generalized spectral decomposition method, which can be interpreted as
an automatic model reduction technique. This method tries to circumvent the above
mentioned drawbacks of Galerkin spectral stochastic approaches.

2 Overview of computational stochastic methods

In this section, we give a brief overview of classical stochastic methods, emphasize
on their domain of applications, their advantages and drawbacks. For complementary
reviews on computational stochastic approaches, we refer to [83,115,60,54,82] and the
references therein.
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2.1 Generic formulation of stochastic problems

For many physical problems, the conceptual model can be translated in terms of
stochastic partial di�erential equations (SPDEs). The modeling of uncertainties con-
sists in de�ning a suitable probability space (Θ, B, P ), where Θ denotes the space of
elementary events, B a σ-algebra de�ned on Θ and P a probability measure. The re-
sponse u of the model is then a random variable, with value in a certain function space,
which has to verify almost surely a set of equations formally denoted

A(u(θ); θ) = b(θ), (1)

where A is a di�erential operator and b a right-hand side associated with the source
terms. Uncertainty (or randomness) on the model can be formalized as a dependency
of the operator and right-hand side on to the elementary event θ ∈ Θ.

In this paper, we consider that the probabilistic content can be correctly modeled
with a �nite set of random variables ξ : θ ∈ Θ 7→ ξ(θ) ∈ Ξ ⊂ Rm, de�ning a new �nite
dimensional probability space (Ξ , BΞ , Pξ), where Ξ = ξ(Θ), where BΞ is a σ-algebra
on Ξ and where Pξ is the probability measure associated with ξ (image measure of P

by ξ). This case is encountered when parameters of operator A or right-hand side b are
real-valued random variables or stochastic processes (or �elds), the latter being reduced
(or discretized) with ad hoc spectral decomposition techniques (e.g. Karhunen-Loève,
see appendix A). A random variable is then be considered as a measurable function
de�ned on (Ξ , BΞ , Pξ). The solution u of the physical model can then be searched as
a function of ξ, satisfying almost surely a set equations formally written

A(u(ξ); ξ) = b(ξ). (2)

2.2 Direct integration techniques

In a probabilistic analysis, quantities of interest can often be written as the expectation
of a certain functional of the response u:

E(f(u(ξ); ξ)).

The estimation of such a quantity requires the computation of an integral with respect
to measure Pξ:

E(f) =

∫

Ξ

f(u(y);y)dPξ(y) =

∫

Ξ

f(u(y);y)pξ(y)dy,

where pξ denotes the probability density function of ξ. Several numerical integration
techniques can then be used. In practise, these integration techniques lead to the fol-
lowing estimation:

E(f) ≈ QK(f) =

K∑

k=1

f(u(yk);yk)ωk,

where the ωk ∈ R and the yk ∈ Ξ denote the integration weights and points respec-
tively. Direct integration techniques then only ask for the evaluation of the model's
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response for K outcomes ξ = yk of basic random variables. The computation of these
responses {u(yk)}K

k=1 requires the resolution of K uncoupled deterministic problems:

A(u(yk);yk) = b(yk), k = 1 . . . K.

The interest of these approaches is that well mastered deterministic numerical methods
can be used. Moreover, deterministic problems being uncoupled, it allows the use of a
massive parallelization. However, in order to obtain a good accuracy on QK(f), the
number of points K can be very large and depends on the function to be integrated.

2.2.1 Monte-Carlo

Monte-Carlo integration [22,116] consists in choosing for the integration points K inde-
pendent random samples (in practice pseudo-random samples) of variables ξ. Weights
are taken equal to ωk = 1

K . The estimation QK(f) is a random variable and the
integration error asymptotically tends toward a Gaussian random variable1 :

E(f) − QK(f) ∼ K−1/2σfN(0, 1),

where σf is the standard deviation of f . The estimation being random, a prediction
is then given with a certain con�dence interval. Standard deviation of the estimator
equals K−1/2σf . The convergence rate of this estimator, in O(K−1/2), is independent
of the stochastic dimension m, which makes possible the use of Monte-Carlo technique
in very high stochastic dimension. However, convergence is very slow.

Numerous improvements have been proposed for Monte-Carlo techniques [22]. They
rely on a modi�cation of the generated samples (Antithetic variables, Strati�ed Sam-
pling, Matching Moment methods, ...) or a modi�cation of the function to be integrated
(Importance sampling, Control Variates, ...) in order to reduce its variance and there-
fore to improve the accuracy.

2.2.2 Quasi Monte-Carlo

Quasi Monte-Carlo methods [22,119,88] consist in choosing the points {yk}
K
k=1 from

�low discrepency� sequences and to choose for the weights ωk = 1
K . We assume that the

integration domain is Ξ = [0, 1]m and that the measure Pξ is uniform. This is always
possible with a change of basic random variables. From Koksma-Hlawka theorem [22],
we have the property

|E(f) − QK(f)| 6 V (f)DK ,

where V (f) is the total variation of f and where DK is the discrepency 2 of the sequence
{yk}

K
k=1. A sequence {yk}

K
k=1 is said quasi-random if DK 6 c log(K)nK−1, where

c and n are constants which possibly depend on the dimension m. Generally, n = m,
which leads to the classical error estimate of Quasi Monte-Carlo methods:

|E(f) − QK(f)| ∼ O(log(K)mK−1).

1 N(0, 1) denotes a zero mean and unit variance Gaussian random variable
2 The discrepency of a sequence can be interpreted as the maximum error for the approxi-

mation of the volume of hyper-rectangles of [0, 1]m from samples of this sequence [22].
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If the stochastic dimension is not too large, it then gives a better asymptotic conver-
gence rate than the basic Monte-Carlo method (convergence dominated by the term
K−1). Some choices of quasi-random sequences can be found in [88]. Figure 1 shows
the points obtained from Sobol sequence. One can observe a very uniform distribution
of the sequence.
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(b) K = 10, 000

Fig. 1 Quasi-Monte Carlo: integration points obtained from Sobol sequence on Ξ = [0, 1]2

(uniform measure)

2.2.3 Tensorization of classical quadratures

⋄ Full tensorization
Classical quadrature techniques (Gauss, Clenshaw-Curtis, ...) can also be used [102].
We here suppose that random variables are independent, so that Ξ = ×m

i=1Ξi and
Pξ = ⊗m

i=1Pξi
. Let us suppose that on each stochastic dimension, a classical quadrature

rule Q(i) has been de�ned:

Q(i)(f) =

Ki∑

k=1

f(yi,k)ωi,k ≈

∫

Ξi

f(y)pξi
(y)dy.

A quadrature in dimension m can then be obtained by a full tensorization of unidi-
mensional quadratures:

QK = Q(1) ⊗ . . . ⊗ Q(m),

with

QK(f) =

K1∑

k1=1

. . .

Km∑

km=1

f(y1,k1
, . . . , ym,km

)ω1,k1
. . . ωm,km

.

For quadratures with Ki = n points on each dimension, one obtains a total number
of points K = nm, which increases exponentially with the stochastic dimension. Then,
for a function of class C

r, the integration error veri�es:

|E(f) − QK(f)| ∼ O
(
K−(2r−1)/m

)
.

We observe a strong deterioration of the convergence rate in K when increasing the
dimension m.
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⋄ Smolyak tensorization
Smolyak tensorization formula can be used in order to drastically decrease the number
of integration points when dealing with high stochastic dimension m [118,42,96,100,
84]. This necessitates the de�nition of a sequence of quadratures {Q

(i)
k }l

k=1 on each
dimension, where in Q

(i)
k , k denotes the level of the quadrature. The idea is to combine

one-dimensional quadratures while avoiding the use of high-level quadratures on several
dimensions simultaneously. A level l quadrature in dimension m is obtained by the
following tensorization formula3:

Ql
K =

∑

k∈Nm

l6|k|6l+m−1

(−1)l+m−1−|k|
(

l − 1

|k| − l

)
Q

(1)
k1

⊗ . . . ⊗ Q
(m)
km

.

If the Q
(i)
k denote k-points quadratures, one obtains a total number of integration

points K ∼ O( 2l

l! ml). The integration error depends on the smoothness of function f .
For a r-times di�erentiable function f , the integration error behaves as:

|E(f) − Ql
K(f)| ∼ O

(
K−rlog(K)(m−1)(r+1)

)
.

We observe a better convergence rate than with the full tensorization. Figures 2 and
3 show integration points obtained with a Smolyak tensorization of Gauss-Hermite
and Gauss-Legendre quadratures. These Gaussian quadratures have the property to
integrate exactly multidimensional polynomials with total degree less than or equal to
(2l−1) while a full tensorization integrates exactly multidimensional polynomials with
partial degree less than or equal to (2l − 1).
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(a) l = 4, K = 30
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(b) l = 10, K = 385

Fig. 2 Smolyak tensorization of Gauss-Hermite quadratures. Level l quadrature where the
Q

(i)
k

are quadratures with k points.

These Smolyak tensorizations are particularly interesting when nested quadratures
are used on each dimension (the set of integration points of a quadrature Q

(i)
k is in-

cluded in that of Q
(i)
k+1). That leads to a signi�cant reduction in the number of in-

tegration points. In this case, the obtained integration grids are called �sparse grids�.
Another major interest of these nested formulas is to reduce the cost of an adaptive
integration procedure. Indeed, when increasing the quadrature level, calculations al-
ready performed on lower-level grids can be re-used. Several nested quadrature rules
are available: Newton-Cotes, Clenshaw-Curtis, Gauss-Patterson...
3 Let us note that anisotropic Smolyak tensorization can also be used [43,21].
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(a) l = 6, K = 91
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(b) l = 10, K = 385

Fig. 3 Smolyak tensorization of Gauss-Legendre quadratures. Level l quadrature where the
Q

(i)
k

are quadratures with k points.

2.3 Perturbation method, Neumann expansions

When one is interested in the �rst statistical moments of the solution, perturbation or
Neumann expansion method are alternative techniques. These methods are based on
a series representation of the solution of (2).

2.3.1 Perturbation method

The basic perturbation method [65] consists in seeking an expansion of the solution
around the mean µξ = E(ξ) of random variables:

u(ξ) :=u0 +

m∑

i=1

(ξi − µξi
)u,i+

m∑

i,j=1

1

2
(ξi − µξi

)(ξj − µξj
)u,ij + ... (3)

where u0 := u(µξ), u,i := ∂u
∂ξi

(µξ), u,ij := ∂2u
∂ξiξj

(µξ),... By operating similar expan-
sions for operator A(·; ξ) and right-hand side b(ξ) and by injecting these expansions in
equation A(u(ξ); ξ) = b(ξ), one obtains that the coe�cients of the expansion of u are
solutions of the following sequence of problems:

A0(u0) = b0 (4)
A0(u,i) = b,i − A,i(u0), (5)
A0(u,ij) = b,ij − A,i(u,j) − A,j(u,i) − A,ij(u0), (6)
. . .

All of these problems are deterministic problems with the same deterministic opera-
tor A0 = A(·; µξ). The calculation of the right-hand sides requires to compute the
derivatives with respect to variables ξi of the operator and the right-hand side of the
stochastic problem. These quantities, relatively classical in sensitivity analysis, are pro-
vided by some computer codes. They generally use numerical di�erentiation and are
often limited to �rst or second derivatives. Although a priori allowing for a complete
representation of the solution, the perturbation method is then often limited to a small
order of decomposition (order 2), which limitates its application to the case of basic
random variables with of a small coe�cient of variation. This method is often used for
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evaluating the �rst two moments of the solution (mean, covariance), simply expressed
in terms of the expansion coe�cients:

E(u) = u0 +
1

2

m∑

i,j=1

Cξiξj
u,ij + ... (7)

E(u ⊗ u) =

m∑

i,j=1

Cξiξj
(u,i ⊗ u,j) + ... (8)

where Cξiξj
denotes the covariance of variables ξi and ξj .

2.3.2 Neumann decomposition

Neumann decomposition method [48,5] starts with the following decomposition:

A(·; ξ) = A0 + Ã(·; ξ) = A0(I + A
−1
0 Ã(·; ξ)),

where A0 is a deterministic operator, A
−1
0 its inverse, and where I denotes the identity

operator. The inverse of random operator A, under some assumptions [5], can then be
written under the form:

A
−1(·; ξ) =

∞∑

i=0

(−1)i(A−1
0 Ã(·; ξ))iA−1

0 , (9)

so that the solution of problem (2) can be written as:

u(ξ) =

∞∑

i=0

(−1)iui(ξ), (10)

where the series terms are solutions of the following problems:

A0(u0(ξ)) = b(ξ), (11)
A0(ui(ξ)) = Ã(ui−1(ξ); ξ), pour i > 1. (12)

Computing the expansion terms requires the resolution of deterministic problems with
random right-hand sides, all these problems being associated with a unique determin-
istic operator A0. However, these calculations are very expansive [5]. This approach
should then preferably be used to estimate the �rst moments of the solution.

Remark 1 - Connection with the perturbation method.
One can easily show that for a deterministic right-hand side and for an operator A(·; ξ)

which depends linearly in the variables ξi, Neumann expansion method coincides with
the perturbation method mentioned in section 2.3.1.
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2.4 Reliability-oriented techniques

In a reliability analysis, the aim is to compute the probability Pξ(D) of a particular
event D, associated with the failure of a system. In general, the event can be character-
ized from a quantity of interest J(u(ξ); ξ), the event �the system fails� corresponding
to negative values of this quantity (by convention). The event D ⊂ Ξ , called �failure
domain�, is de�ned by D = {y ∈ Ξ ; J(u(y);y) < 0} (see Figure 4). The probability of
this event is de�ned by:

Pξ(D) =

∫

D
dPξ(y).

Various methods have been proposed for the estimation of this probability (see [36,85]
for a detailed description) and are already implemented in many commercial codes. We
here brie�y recall some basic methods.

y
1

y
2

D

Fig. 4 Failure domain D in Ξ ⊂ R2.

2.4.1 First or Second Order Reliability Method (FORM/SORM)

In the case where the probability Pξ(D) is low (i.e. D is a rare event), methods FORM
and SORM consist in approximating the failure domain D by a simpler domain C,
whose probability Pξ(C) can be estimated analytically. Let us brie�y explain the prin-
ciples of these techniques. We consider that ξ is a vector of independent centered
normalized Gaussian random variables (possibly after a suitable change of random
variables). We then try to �nd the most likely failure point y∗ ∈ D ⊂ Ξ = Rm, called
the �conception point�. Due to the form of standard Gaussian probability density func-
tion pξ, this is the point in the failure domain which is the nearest from the origin. It
is de�ned with the following optimization problem:

y
∗ = argmin

y∈D
‖y‖2 = argmin

y∈Rm

J(u(y);y)<0

‖y‖2. (13)

Dedicated optimization algorithms have been proposed for the resolution of this prob-
lem. For simple failure domains D, these algorithms converge rapidly. They ask for
the evaluation of functional J(u(y);y) in a few points y, associated with particular
outcomes of ξ.

The conception point being computed, the FORM method consists in de�ning the
hyper-plane that passes through this point and which is orthogonal to vector y∗. This
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hyper-plane de�nes a semi-space C approximating the domain D (see Figure 5(a)).
The probability of C is simply obtained by Pξ(C) = Φ(−β), where Φ is the standard
Gaussian cumulative distribution function and where β is the reliability index, de�ned
by β = ±‖y∗‖ (signed distance between the origin and the conception point). In the
standard SORM method, a better approximation is provided by introducing a semi-
space C de�ned from the paraboloid tangent to D at y∗ (Figure 5(b)). The probability
of failure can then be estimated by Pξ(C) = Φ(−β)

∏m
i=1(1 − κiβ)−1/2, where the κi

denote the principal curvatures of the paraboloid.

y
1

y
2

β

y∗

C

(a) FORM

y
1

y
2

β

y∗

C

(b) SORM

Fig. 5 FORM (a) and SORM (b) method : approximation C of the failure domain D and
reliability index β

In the case of a relatively small stochastic dimension, FORM and SORM methods
allow obtaining relatively accurate predictions with acceptable computational times
(reduced number of calls to deterministic codes). However, they have some limitations.
In particular, they do not allow to quantify the error on the estimation of the probability
of failure. Moreover, in their simplest forms, they are not adapted to complex geometries
(or topologies) of failure domains (optimization problem (13) may have several local
minima) and can lead to a bad estimation of the probability of failure (especially in
high stochastic dimension where FORM and SORM approximations deteriorate).

2.4.2 Monte-Carlo, Importance Sampling

A direct integration technique can also be used (see Section 2.2) by interpreting the
computation of Pξ(D) by the computation of an expectation:

Pξ(D) =

∫

Ξ

1D(y)dPξ(y) = E(1D(ξ)),

where 1D if the indicator function of domain D. These techniques have the advantage
to give a controlled estimation of the probability.

The use of a standard Monte-Carlo method appears to be prohibitive. One can
understand it by observing Figure 6(a), which illustrates that a large number of Monte-
Carlo samplings are necessary in order to obtain enough samples in D. The coe�cient
of variation of the Monte-Carlo estimator QK(1D) is of the order (KPξ(D))−1/2 for
low probability Pξ(D). In order to obtain a desired coe�cient of variation ǫ of the
estimator, a very large number of samples K ≈ ǫ−2Pξ(D)−1 must be computed (e.g.
K ≈ 106 for ǫ = 10−1 and Pξ(D) = 10−4).
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A possible improvement consists in using the Importance Sampling method. This
method consists in rewriting the expectation E(1D(ξ)) as follows:

E(1D(ξ)) =

∫

Ξ

1D(y)
pξ(y)

pη(y)
pη(y)dy

= E

(
1D(η)

pξ(η)

pξ(η)

)
:= E(g(η)),

where pη is a well-chosen probability density function allowing to obtain a variance
of g(η) lower than the variance of 1D(ξ). The classical Monte-Carlo method is then
applied to estimate E(g(η)), by using pseudo-random samples of random variables η

with probability density function pη. In the case of a reliability analysis, a possible
choice consists in �nding the conception point y∗ de�ned by (13) and to de�ne the
density pη(y) = pξ(y − y∗). In other words, this can be interpreted as a Monte-Carlo
method where random samples are centered around the conception point (Figure 6(b)).
Various improvements of this Importance Sampling method have been proposed: Axis-
Orthogonal Importance Sampling, Adaptive Importance Sampling, Radial Importance
Sampling...

y
1

y
2

D

(a) Monte-Carlo

y
1

y
2

D

y∗

(b) Importance Sampling

Fig. 6 Simulation methods: standard Monte-Carlo (a), Important Sampling around the con-
ception point y

∗

2.5 Spectral stochastic methods

The methods presented above are classically used for evaluating predictions such that
moments of a quantity of interest, or the probability of particular events. The applica-
tion of these methods are limited by more or less restrictive assumptions (variability
of input variables, linearity of the problem...) but mainly by computational costs in-
duced by the evaluation of the model response for a large number of outcomes of input
variables.

An alternative approach consists in searching a functional representation of solu-
tion u, or more speci�cally of a quantity of interest J(u(ξ); ξ), under the form of a
development

J(u(ξ); ξ) ≈
∑

α∈IP

JαHα(ξ), (14)
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where {Hα(ξ)}α∈IP
is a given basis of functions and where the Jα are the coe�-

cients to be determined. This approach can be interpreted as the construction of a
response surface of the model. The functional representation (14) being known, a fast
post-treatment of the solution can be performed (evaluation of random samples, gradi-
ents...). Classical and generic approaches can then be used in order to obtain statistical
moments, sensitivity to input variables or even a complete and accurate description of
the probability law of J .

Since the works of Ghanem and Spanos [48], a growing interest has been devoted to
this type of approach, commonly called �spectral stochastic methods�. These methods
only di�er by the choice of basis functions and by the de�nition (and therefore the com-
putation) of the coe�cients of the decomposition. The following sections are devoted
to these approaches. Possible choices for basis functions will be presented in section
3. For the de�nition of the approximation, two classes of approaches may be distin-
guished: direct approaches (L2 projection, regression, interpolation) and Galerkin-type
stochastic approaches.

2.5.1 Galerkin spectral stochastic methods

Galerkin-type spectral stochastic approaches [48,6,84] rely on the same mathemati-
cal basis as deterministic Galerkin-type approaches. They generally allow for a good
control of the approximation (a priori error estimation [34,40], a posteriori error es-
timation and adaptivity [62,69,81]) and are often more robust and de�nitely more
e�cient than direct approaches. However, they often require a good knowledge of the
mathematical structure of the physical model and the elaboration of speci�c solvers
for a given class of problems.
Many works have been devoted to the elaboration of e�cient solvers (see section
(4.4)) and more recently to alternative model reduction techniques (see sections 5
and 6). These developments allow drastic reduction of computational costs and make
of Galerkin stochastic approaches very e�cient and predictive tools. These methods
have been applied to various domain of applications in physics (mechanics, chemistry,
electromagnetism, ...). Their transfer toward industrial applications, currently under
way for some kinds of problems, will need further improvements in methodologies for
allowing an e�cient treatment of a large class of problems of interest.
Principles of Galerkin stochastic approaches and classical solution techniques will be
detailed in section 4.

2.5.2 Direct spectral methods

Direct spectral stochastic methods (projection, regression or interpolation) use a dif-
ferent de�nition of the coe�cients of the decomposition. The computation of the coe�-
cients only requires the resolution of uncoupled deterministic problems. Therefore, they
do not require any speci�c implementations as long as deterministic codes are available.
These approaches can be seen as alternatives to direct methods such as Monte-Carlo
techniques. However, as Monte-Carlo techniques, they can require the resolution of a
large number of deterministic problems and lead to high computational costs. Below,
we brie�y introduce the principles, advantages and drawbacks of these approaches.
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⋄ L2 Projection
The L2 projection method [49,73,74,104,18] consists in de�ning the approximation
(14) as the projection of J on the sub-space of L2(Ξ , dPξ) spanned by functions
{Hα}α∈IP

, the projection being de�ned with respect to the natural inner product
in L2(Ξ , dPξ)4:

< v, w >L2(Ξ,dPξ)= E(v(ξ)w(ξ)) =

∫

Ξ

v(y)w(y)dPξ(y).

Denoting by ‖v‖L2(Ξ,dPξ) = E(v(ξ)2)1/2 the associated norm, the coe�cients are
de�ned by

{Jα}α∈IP
= argmin

{Jα}α∈IP

‖J −
∑

α∈IP

JαHα‖
2
L2(Ξ,dPξ). (15)

The use of orthonormal basis functions {Hα} leads to the following de�nition of the
coe�cients:

Jα =< J, Hα >L2(Ξ,dPξ)= E(J(u(ξ); ξ)Hα(ξ)). (16)

The computation of the coe�cients then require the evaluation of an integral on Ξ with
respect to measure dPξ. For that purpose, one of the integration techniques introduced
in section 2.2 can be used, thus leading to the following estimation of the coe�cients:

Jα ≈
K∑

k=1

ωkJ(u(yk);yk)Hα(yk). (17)

As for direct integration techniques, this approach requires the resolution of K de-
terministic problems for estimating quantities J(u(yk);yk) associated with particular
outcomes ξ = yk. This approach is then usually called a �non-intrusive� projection
method in the sense that classical numerical codes can be used to solve these K un-
coupled deterministic problems.
This approach, certainly very generic, requires a particular care in the choice of the
integration technique. The use of a precise integration is often necessary for obtaining
an accurate projection, which requires to solve a very large number of deterministic
problems. Of course, a Monte-Carlo integration can be used. However, for an accurate
computation of the coe�cients, it may require a large number of samples due to the
high variance of function (J(u(ξ); ξ)Hα(ξ)). Therefore, we generally opt for standard
high order quadrature techniques (sparse quadrature for high stochastic dimensions
[61,84]) in order to reduce the number of integration points. The regularity of func-
tion (JHα) being unknown a priori, it is often necessary to use adaptive quadrature
techniques (nested quadrature should preferably be used in order to re-use already
performed computations). The development of adaptive integration strategies and the
de�nition of rigorous error estimators on the obtained functional representation are
still challenges in the context of direct projection techniques. More generally, the lack
of rigorous error estimators is a drawback which is common to non-intrusive spectral
stochastic techniques (projection, regression, interpolation).

4 See section 3.1.1 for the de�nition of Hilbert space L2(Ξ, dPξ).
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⋄ Regression
Regression methods [29,28,15,124] rely on the same principles as classical response
surface methods [64]. They consist in de�ning the coe�cient of the decomposition with
the following optimization problem:

min
{Jα}α∈IP

K∑

k=1

ωk

(
J(u(yk);yk) −

∑

α∈IP

JαHα(yk)
)2

, (18)

where the ωk and yk are the regression weights and points respectively. Denoting
H = (. . . Jα . . .) ∈ RP the set of coe�cients to be determined, the optimization problem
leads to the following linear system of equations:

HJ = Z, (19)

(H)αβ =

K∑

k=1

ωkHα(yk)Hβ(yk), (20)

(Z)α =

K∑

k=1

ωkHα(yk)J(u(yk);yk). (21)

Regression methods, as the L2 projection, then only require the resolution of uncou-
pled deterministic problems (associated with di�erent outcomes ξ = yk) in order to
build the right-hand side of system (19). The choice of regression weights and points
is however a di�ucult point, especially since the regularity of function J is not known
a priori. Several choices have been proposed: Monte-Carlo or Quasi Monte-Carlo sam-
plings for the yk and ωk = 1

K , Gaussian quadrature points and weights for the yk and
ωk (or a subset of these points), ... The reader can refer to [14] for a detailed study
of these di�erent choices (accuracy of the solution, impact on the condition number of
the linear system, ...). A methodology for the adaptive construction of functional basis
have been proposed in [17].

Remark 2 - Connection with the projection method.
Most of the proposed choices for the yk and ωk correspond to points and weights of
classical integration techniques. By introducing the �numerical inner product�

< v, w >K :=

K∑

k=1

ωkv(yk)w(yk),

and the associated norm ‖v‖K =< v, v >
1/2
K , one can interpret the regression problem

(18) as the projection of J on span{Hα}α∈IP
⊂ L2(Ξ , dPξ) with respect to inner

product < ·, · >K . In fact, coe�cients (H)αβ of matrix H are approximations of inner
products of basis functions: (H)αβ =< Hα, Hβ >K . If the quadrature integrates exactly
these quantities, we then have a complete equivalence with a classical L2 projection
method.
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⋄ Interpolation/Collocation
Interpolation techniques [8] consist in choosing for {Hα}α∈IP

an interpolation basis
on a set of points {yα}α∈IP

. Coe�cient uα of the decomposition of u is then obtained
by solving a deterministic problem associated with the outcome ξ = yα. The result-
ing methodology is also called a stochastic collocation approach. For dealing with high
stochastic dimension, Smolyak tensorization of unidimensional interpolation basis have
been proposed in [39]. The interpolation property of the resulting multidimensional
polynomial basis is preserved if nested interpolation grids are used in the Smolyak
tensorization. Let us note that when using for the interpolation basis the Lagrange
polynomials associated with the points of the classical Gaussian quadrature, the ob-
tained decomposition coincides with the one obtained with a L2 projection method
associated with this quadrature.

3 Functional representation of random variables

For a given physical model, when uncertainties are modeled with a �nite set of random
variables ξ = (ξ1, ..., ξm), one has to work on the associated �nite dimensional proba-
bility space (Ξ , BΞ , dPξ), where Ξ ⊂ Rm. A random quantity of interest is then inter-
preted as a random variable de�ned on (Ξ , BΞ , dPξ) or in other terms as a measurable
function de�ned on this measured space. For many physical problems, quantities of in-
terest are second order random variables (i.e. with �nite second order moments), which
leads to introduce the space of square integrable functions L2(Ξ , dPξ). This functional
point of view of quantities of interest allows proposing functional representation tech-
niques inspired from classical results in functional analysis and approximation theory.
Letting {Hα}α∈IP

be an approximation basis of L2(Ξ , dPξ), one can approximate a
quantity of interest v(ξ) under the form:

v(ξ) =
∑

α∈IP

vαHα(ξ). (22)

Several choices have been proposed for the construction of approximation basis in
L2(Ξ , dPξ). Classical choices rely on classical construction of polynomial basis (poly-
nomial chaos [130,23,48], generalized polynomial chaos [132], Lagrange interpolation
[8]) or piecewise polynomial functions (�nite elements [34,128], wavelets [71,72]). A
generic vision of this construction and the extension to arbitrary measures is intro-
duced in [121]. The choice of a speci�c representation depends on regularity properties
of functions to be represented. Some choices (�nite elements, wavelets) are suitable for
developing adaptive approximation techniques.

3.1 General principles

3.1.1 Hilbert space of square integrable functions

The space of real-valued square integrable functions de�ned on probability space (Ξ , BΞ , Pξ)

(or equivalently the space of real-valued second order random variables) is de�ned by:

L2(Ξ , dPξ) = {v : ξ ∈ Ξ 7→ v(ξ) ∈ R;

E(v2) :=

∫

Ξ

v(y)2dPξ(y) < ∞}.
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If endowed with the following natural inner product, it is a Hilbert space:

< v, w >L2(Ξ,dPξ)= E(vw) =

∫

Ξ

v(y)w(y)dPξ(y).

A Hilbertian basis {Hα}α∈I of L2(Ξ , dPξ) is a complete set of orthonormal functions:

< Hα, Hβ >L2(Ξ,dPξ)= δαβ (23)

∀v ∈ L2(Ξ , dPξ), < Hα, v >= 0, ∀α ∈ I ⇒ v = 0. (24)

Each function v ∈ L2(Ξ , dPξ) admits a unique decomposition on such a basis:

v =
∑

α∈I

vαHα, (25)

vα =< v, Hα >L2(Ξ,dPξ)= E(v(ξ)Hα(ξ))

=

∫

Ξ

v(y)Hα(y)dPξ(y). (26)

3.1.2 Case of independent basic random variables: tensorization of basis

In the case where random variables ξi are mutually independent, the construction of
approximation basis can be reduced to a one-dimensional construction. Indeed, de-
noting (Ξi, BΞi

, Pξi
) the one-dimensional probability space associated with random

variable ξi (where Pξi
is the marginal probability measure associated with ξi), we have

Ξ = Ξ1 × ... × Ξm, (27)
Pξ = ⊗m

i=1Pξi
, (28)

L2(Ξ , dPξ) = ⊗m
i=1L2(Ξi, dPξi

). (29)

Basis of L2(Ξ , dPξ) can then be obtained by tensorization of basis of spaces L2(Ξi, dPξi
).

Denoting {h
(i)
n }n∈I(i) a basis of L2(Ξi, dPξi

), we let

Hα(y) = h
(1)
α1 (y1) . . . h

(m)
αm

(ym),

with α = (α1, . . . , αm) ∈ I = I
(1) × ... × I

(m). If basis functions {h
(i)
n }n∈I(i) are

orthonormal with respect to the natural inner product in L2(Ξi, dPξi
), basis functions

{Hα}α∈I are orthonormal:

< Hα, Hβ >L2(Ξ,dPξ) =

m∏

i=1

< h
(i)
αi

, h
(i)
βi

>L2(Ξi,dPξi
)

=

m∏

i=1

δαiβi
:= δαβ .
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3.1.3 Case of dependent basic random variables

In the case where random variables ξi are dependent, the above construction of or-
thonormal basis by tensorization of unidimensional basis is no longer possible since
the space L2(Ξ , dPξ) has no more a tensor product structure. In [121], the following
construction is proposed. Let us de�ne basis {h(i)

n }n∈I(i) of L2(Ξi, dPξi
) as previously.

A basis {Hα}α∈I of L2(Ξ , dPξ) can then be de�ned as follows:

Hα(y) = h
(1)
α1 (y1) . . . h

(m)
αm

(ym)

√
pξ1

(y1) . . . pξm
(ym)

pξ(y1, . . . , ym)
,

where pξ is the probability density function of ξ and where pξi
if the marginal proba-

bility density function of ξi.
If basis functions {h(i)

n }n∈I(i) are orthonormal, the orthonormality of basis {Hα}α∈I is
preserved. However, even if unidimensional basis functions are polynomials, functions
{Hα} are no more polynomials in general. Let us note that in the case of indepen-
dent basic random variables, the proposed construction coincides with the classical
construction by tensorization.

3.2 Polynomial approximation

3.2.1 Spaces of polynomial functions

The space of multidimensional polynomials with partial degree p de�ned on Ξ ⊂ Rm

is denoted

Qp(Ξ) = span{
m∏

i=1

yαi

i , α ∈ N
m; |α|∞ := max

i∈{1...m}
αi 6 p}

with dim(Qp(Ξ)) = (p + 1)m. The space of multidimensional polynomials of total
degree p de�ned on Ξ ⊂ Rm is de�ned by:

Pp(Ξ) = span{
m∏

i=1

yαi

i , α ∈ N
m; |α| :=

m∑

i=1

αi 6 p},

with dim(Pp(Ξ)) =
(m+p)!

m!p! . In the case m = 1, Pp(Ξ) = Qp(Ξ). In the case m > 1,
Pp(Ξ) ⊂ Qp(Ξ)

If Ξ = Ξ1× . . .×Ξm, Qp(Ξ) is a �full� tensorization of unidimensional polynomial
spaces of degree p:

Qp(Ξ) = Qp(Ξ1) ⊗ . . . ⊗ Qp(Ξm).

The space Pp(Ξ) can be interpreted as a partial (or �sparse�) tensorization of polyno-
mial spaces Qp(Ξi) :

Pp(Ξ) =
∑

α∈Nm,|α|=p

Qα1(Ξ1) ⊗ . . . ⊗ Qαm(Ξm).
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3.2.2 Polynomial Chaos

Polynomial Chaos representation consists in using classical orthonormal polynomial
basis of L2(Ξ , dPξ). In the case where random variables are independent, basis are ob-
tained by a sparse tensorization of polynomial basis of L2(Ξi, dPξi

) (see section 3.1.2).
The polynomial chaos of degree p in dimension m is no more than the space Pp(Ξ). The
homogeneous chaos of degree p in dimension m, denoted Hp, is the orthogonal com-
plement of Pp−1(Ξ) in Pp(Ξ). The space L2(Ξ , dPξ) admits the following orthogonal
decomposition:

L2(Ξ , dPξ) = ⊕p∈N Hp.

Let us see how to construct basis functions. On each dimension, associated with
a random variable ξi, we introduce an orthonormal polynomial basis {h

(i)
n }n∈N of

L2(Ξi, dPξi
), where h

(i)
n ∈ Pn(Ξi) is a polynomial of degree n. These polynomials, for

a given probability measure Pξi
, are uniquely de�ned and verify:

< h
(i)
n , h

(i)
l >L2(Ξi,dPξi

)=

∫

Ξi

h
(i)
n (y)h

(i)
l (y)dPξi

(y) = δnl.

In table 1, some classical probability measures and associated orthogonal polynomials
are indicated (see e.g. [132] for a more general introduction to orthogonal polynomials).

Law Ξ pξ(y) Polynomials
Uniform [−1, 1] 1

2
Legendre

Gausian R 1√
2π

exp(− y2

2
) Hermite

Gamma [0, +∞] 1
Γ (a)

yaexp(−y) Laguerre
Beta [−1, 1]

(1+y)a−1(1−y)b−1

2a+b−1B(a,b)
Jacobi

Table 1 Classical probability measures and associated orthogonal polynomials (Γ and B are
the Euler Gamma and Beta functions respectively).

An orthonormal basis of Hp is then obtained by tensorization of unidimensional
polynomials:

Hp = span{Hα(y) =

m∏

i=1

h
(i)
αi

(yi), α ∈ N
m; |α| = p}.

Figure 7 illustrates three basis functions of the Hermite polynomial chaos in dimension
m = 2 (orthonormal polynomials with respect to the standard Gaussian measure Pξ).

Remark 3 - In the case of dependent random variables, one can use this construction
associated with the technique introduced in section 3.1.3 in order to construct (non
polynomial) basis of L2(Ξ , dPξ).
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(a) α = (1, 3) (b) α = (2, 2) (c) α = (4, 4)

Fig. 7 Hermite polynomials Hα(ξ) in dimension m = 2

3.2.3 Lagrange Interpolation

Another approach consists in introducing a basis of Qp(Ξ) (or Pp(Ξ)) composed with
interpolation polynomials [8,39]. The use of such approximation basis is associated
with collocation-type approaches for solving SPDEs.
Here, we suppose that random variables are independent. On each stochastic dimen-
sion, we introduce a set of points Υi = {yi,n}

p
n=0 ⊂ Ξi and de�ne the associated

interpolation basis {h(i)
n }p

n=0:

h
(i)
n ∈ Qp(Ξi), h

(i)
n (yi,l) = δnl.

Interpolation points are usually selected as the roots of the classical orthogonal poly-
nomial of degree (p + 1), i.e. the (p + 1) Gauss points associated with measure dPξi

(other choices are discussed in [39]). Let us note that this choice leads to orthogonal
interpolation functions:

< h
(i)
n , h

(i)
l >L2(Ξi,dPξi

)= E(h
(i)
n (ξi)h

(i)
l (ξi))

=

∫

Ξi

h
(i)
n (y)h

(i)
l (y)dPξi

(y) = δnlωn,

where the {ωk}
p
k=0 denote Gauss quadrature weights. Indeed, we have

∫

Ξi

h
(i)
n (y)h

(i)
l (y)dPξi

(y) =

p∑

k=0

ωkh
(i)
n (yi,k)h

(i)
l (yi,k)

=

p∑

k=0

ωkδnkδlk = ωnδnl. (30)

⋄ Full tensorization.
Basis of Qp(Ξ) can be obtained by a full tensorization of interpolation basis of Qp(Ξi).
They are interpolation basis on a multidimensional grid obtained by full tensorization of
unidimensional grids Υi. Figures 8 and 9 show interpolation basis functions in dimension
m = 2 obtained with Gaussian and uniform measures respectively.
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(a) α = (1, 1) (b) α = (3, 3) (c) α = (3, 5)

Fig. 8 Interpolation polynomials Hα(ξ) ∈ Q4(Ξ) on Ξ = R2 : interpolation grid composed
by the 5 × 5 Gauss-Hermite integration points.

(a) α = (1, 1) (b) α = (3, 3) (c) α = (3, 5)

Fig. 9 Interpolation polynomials Hα(ξ) ∈ Q4(Ξ) on Ξ = [−1, 1]2 : interpolation grid com-
posed by the 5 × 5 Gauss-Legendre integration points.

Remark 4 - Since Gaussian quadrature with (p + 1) points exactly integrates polyno-
mials with degree (2p + 1), the following orthogonality property also holds:

E(ξih
(i)
n (ξi)h

(i)
l (ξi)) =

p∑

k=0

ωkyi,kδnkδlk

= ωnyi,nδnl. (31)

This property can be useful in the context of Galerkin-type spectral methods. Indeed, for
some kinds of linear problems, one shows that the computation of the decomposition
on the interpolation basis can be reduced to a simple stochastic collocation method,
which only asks for the resolution of uncoupled deterministic problems (see remark 10
in section 4.3).

⋄ Sparse tensorization.
Basis of Pp(Ξ) can also be obtained by a sparse tensorization of unidimensional interpo-
lation basis, using a Smolyak construction [39]. This construction requires the de�nition
of several interpolation formulas on each stochastic dimension. The obtained multidi-
mensional basis remains interpolatory when nested points are used for unidimensional
interpolation formulas (e.g. with Clenshaw-Curtis or Gauss-Patterson points).

3.3 Piecewise polynomial approximations

The techniques introduced in [34,128,71,72] consist in choosing piecewise polynomial
approximation basis, de�ned on a partition of Ξ . These approximation techniques allow
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representing non-smooth functions, possibly with adaptive approximation procedures
[129,81] (by re�ning the partition or by increasing the approximation degree).

Let us here suppose that domain Ξ is bounded in Rm (which can always be obtained
by a suitable change of random variables). We introduce a non-overlapping partition
{Ξk}K

k=1 of Ξ , i.e. such that5:

∪K
k=1Ξ

k = Ξ , Ξ
k ∩ Ξ

k′

= ∅ if k 6= k′.

An approximation space SP ⊂ L2(Ξ , dPξ) is de�ned as the space of functions whose
restriction to Ξk is polynomial of degree pk:

SP = {v : Ξ → R; v|Ξk ∈ Ppk (Ξk)}

or SP = {v : Ξ → R; v|Ξk ∈ Qpk(Ξk)}.

The dimension of this approximation space is P =
∑K

k=1 Pk, with Pk = dim(Ppk ) or
dim(Qpk ). Now, let us see how to construct orthogonal (or orthonormal) basis of SP .

3.3.1 Classical �nite element basis

SP can be written as the orthogonal sum of spaces S
k
Pk

, where S
k
Pk

if a space of
polynomial functions with support Ξk :

SP = ⊕K
k=1S

k
Pk

, S
k
Pk

= {v ∈ SP ; support(v) = Ξ
k}. (32)

An orthonormal basis of SP can simply be obtained from orthonormal basis {Hk
α}α∈IPk

of spaces S
k
Pk

⊂ L2(Ξk, dPξ). Orthonormality property of the {Hk
α}α∈IPk

writes:

< Hk
α, Hk

β >=

∫

Ξk

Hk
α(y)Hk

β (y)dPξ(y) = δαβ .

An orthonormal basis of S
k
Pk

can be constructed in a classical way. In the case of inde-
pendent random variables, an element Ξk of the partition will be classically de�ned as
an hyper-rectangle Ξk = Ξk

1 × . . .×Ξk
m. Then, one obtains an orthonormal polynomial

basis of S
k
Pk

by a full or a sparse tensorization of orthonormal basis of Qpk (Ξk
i ). How-

ever, in the general case, the restriction to Ξk of measure dPξ is not proportional to
a classical probability measure, such that it will not exist a classical orthogonal poly-
nomial basis associated with this restricted measure. Although it is always possible to
numerically construct orthogonal basis, it will be easier in practice to use Ξ = (0, 1)m

with a uniform measure Pξ (by a suitable change of variables). Indeed, in this case,
the restriction of the measure to Ξk is still a uniform measure and the Hk

α are simply
obtained by tensorization of orthogonal Legendre polynomials.

A simple way to build a partition consists in tensorizing one-dimensional partitions.
Denoting {Ξk

i }
Ki

k=1 a partition of Ξi, one obtains a regular partition {Ξk}K
k=1 of Ξ ,

with Ξk = Ξk1
1 × . . . × Ξkm

m . However, the number of elements K =
∏m

i=1 Ki grows
exponentially with the stochastic dimension, which can lead to very high-dimensional
approximation spaces SP (for pk = p, P = K × dim(Qp) or P = K × dim(Pp)). In
5 In probabilistic terms, if Ξk ∩ Ξk′

= ∅, events Ξk and Ξk′ are said incompatible.
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an adaptative approximation strategy, this tensorization of one-dimensional partitions
does not allow operating local re�nements and leads to a rapid increase in the number
of elements K.
An alternative consists in using octree-type algorithms for partitioning Ξ . This ap-
proach clearly requires an error estimation criterium and makes sense within an adap-
tive approximation strategy. The use of anisotropic octree partitions may drastically
reduce the number of elements in high stochastic dimension.

3.3.2 Multi-wavelets

Another way to de�ne orthonormal basis of SP , proposed in [71,72], consists in using
polynomial multi-wavelets basis. This construction has been proposed in the case where
Ξ = (0, 1)m and Pξ is a uniform measure. A binary partition of (0, 1)m is used. Let
us brie�y explain the construction in the one-dimensional case, i.e. Ξ = (0, 1). The
obtention of multidimensional basis in L2((0, 1)m) can be obtained by sparse or full
tensorizations of unidimensional basis. Let us note V k

p the space of piecewise polynomial
functions of degree p associated with a binary partition of (0, 1) with 2k intervals:

V k
p = {v : (0, 1) → R; ∀l ∈ {0, . . . , 2k − 1},

v|(2−kl,2−k(l+1)) ∈ Qp((2−kl, 2−k(l + 1)))}.

Let us note W k
p the orthogonal complement of V k

p in V k+1
p :

V k+1
p = V k

p ⊕ W k
p .

We then obtain the following decomposition: L2((0, 1)) = V 0
p ⊕k>0 W k

p . The space W k
p

is the space of multi-wavelets with resolution k. This multi-wavelet vision allows for a
multi-scale representation of functions in L2((0, 1)), spaces W k

p being associated with
more and more local details as the resolution k increases.
For the construction of an orthonormal basis associated with this decomposition, we
�rst introduce an orthonormal basis {φn}

p
n=0 of V 0

p (composed by Legendre polyno-
mials) and an orthonormal basis {ψn}

p
n=0 of W 0

p . An orthonormal basis of W k
p is then

composed with multi-wavelets ψk
n,l, de�ned by:

ψk
n,l(y) = 2k/2ψn(2ky − l), l = 0 . . . 2k − 1, n = 0 . . . p.

4 Galerkin-type spectral stochastic methods

Galerkin-type spectral stochastic methods, brie�y discussed in section 2.5.1, rely on a
generic procedure for the prediction of the response of a large class of models governed
by stochastic partial di�erential equations (SPDEs). These methods are based on the
same principles as deterministic Galerkin methods. They de�ne an approximation of
the solution, represented on a certain approximation basis (see Section 3), based on
a weak formulation of the stochastic problem (2). After a brief introduction of some
aspects of the analysis of SPDEs, we recall in this section the principles of Galerkin
stochastic approaches and the associated resolution techniques.
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4.1 Stochastic partial di�erential equations

4.1.1 Strong formulation of the problem

Stochastic partial di�erential equations can generally be reduced to the research of a
random variable u, de�ned on a probability space (Ξ , BΞ , dPξ), and verifying almost
surely a set of equations, formally denoted by:

A(u(ξ); ξ) = b(ξ), (33)

where A is a di�erential operator, possibly non-linear, and where b denotes a given
right-hand side.

4.1.2 Weak formulation at the deterministic level

The mathematical analysis of problem (33) and the development of deterministic ap-
proximation methods (�nite elements, spectral approaches,...) generally start with a
weak formulation at the deterministic level of problem (33): �nd a random variable u

with value in a function space V verifying almost surely:

a(u(ξ), v; ξ) = b(v; ξ) ∀v ∈ V, (34)

where a(·, ·; ξ) is a semilinear form (eventually bilinear form) on V × V and where
b(·; ξ) is a bilinear form on V. The random solution u(ξ) of problem (34) is a strong
solution at the stochastic level. A classical mathematical analysis [19,105] (analysis of
properties of a and b) allows determining well-posedness of the problem: existence and
uniqueness of solution, continuous dependence on the data.

4.1.3 Weak formulation at the stochastic level

For a wide class of physical models, the solution is a second order random variable. A
solution of (34) can then classically be searched in a subspace of L2(Ξ , dPξ; V), the
space of second order random variables with values in function space V:

L2(Ξ , dPξ; V) = {v : Ξ → V; E(‖v‖2
V) < ∞}.

Here, we suppose that V is independent of the elementary event6. The working function
space can then be assimilated to a tensor product space:

L2(Ξ , dPξ; V) ≃ V ⊗ L2(Ξ , dPξ) := V ⊗ S.

A weak formulation of problem (34) can then be written: �nd u ∈ V ⊗ S such that

A(u, v) = B(v) ∀v ∈ V ⊗ S, (35)

with

A(u, v) := E(a(u(ξ), v(ξ); ξ)) (36)

=

∫

Ξ

a(u(y), v(y);y)dPξ(y), (37)

6 This hypothesis is not veri�ed for classical formulations of PDE de�ned on random domains
[95,25,92,122].
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and

B(v) := E(b(v(ξ); ξ)) =

∫

Ξ

b(v(y);y)dPξ(y). (38)

Well-posedness of problem (35) still results from a similar analysis of forms A and B

[16,5,9,40,84,120]. One can �nd a more general framework in [12,55,16], introducing
spaces of generalized random variables (distributions spaces).

Remark 5 - Let us notice that some problems may require the introduction of Lebesgue
spaces S = Lp(Ξ , dPξ), p > 2 (see e.g. [84] for the formulation of nonlinear elliptic
problems). From a numerical point of view (see below), classical construction of ap-
proximation spaces presented in section 3 may be used (classical results about density
of polynomial spaces in Lp spaces).

4.1.4 Model example: stationary di�usion equation

In order to illustrate the issues outlined above, we consider a classical stationary dif-
fusion problem whose weak formulation writes as in (34), with V = H1

0 (Ω) and

a(u, v; ξ) =

∫

Ω
κ(x, ξ)∇u(x, ξ) · ∇v(x, ξ) dx, (39)

b(v; ξ) =

∫

Ω
v(x, ξ)b(x, ξ) dx, (40)

where κ(·, ξ) is a stochastic �eld. The following condition gives a necessary condition
for the well-posedness of the problem in the sense of Hadamard (existence, uniqueness
and continuous dependence on the data): if there exist some constants κ0 and κ1 such
that we have almost surely and almost everywhere on Ω

0 < κ0 6 κ(x, θ) 6 κ1 < ∞, (41)

we classically show that a is almost surely continuous and coercive, i.e. there exist
strictly positive constants ca and αa such that ∀u, v ∈ V,

|a(u, v; ξ)| 6 ca‖u‖V‖v‖V, (42)
a(v, v; ξ) > αa‖v‖

2
V. (43)

Supposing that the right-hand side of (33) satis�es classical regularity properties en-
suring continuity of bilinear form b(·; ξ), we ensure the existence and uniqueness of a
strong solution at the stochastic level [9].

The existence and uniqueness of a weak solution to problem (35) is ensured if the
following properties are satis�ed: ∀u, v ∈ V ⊗ S,

|A(u, v)| 6 cA‖u‖V⊗S‖v‖V⊗S, (44)
A(v, v) > αA‖v‖2

V⊗S, (45)
|B(v)| 6 cB‖v‖V⊗S. (46)

In particular, if the stochastic �eld κ veri�es property (41), and if there exist constants
κ0 and κ1 independent of the elementary event ξ, we show that coercivity and continu-
ity properties of A follow with the same constants as for a, i.e. cA = ca and αA = αa.
Condition (41), with κ0 and κ1 independent of the elementary event, is necessary and
su�cient to obtain a well posed problem in the sense of Hadamard.
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Remark 6 - Typical violation of existence conditions.
When parameters of SPDE are stochastic �elds, one generally starts with a discretiza-
tion of these �elds (see appendix A) in order to work in a �nite dimensional probability
space. A particular care must be taken to this discretization step in order to keep a
well-posed problem (34). As an example, let us consider again the stationary di�u-
sion problem. Let κex(x, θ) denote the initial stochastic �eld, de�ned on a probability
space (Θ, B, P ). A good probabilistic modeling step consists in choosing a stochastic
�eld κex satisfying conditions (41), thus ensuring the almost-sure existence of a solu-
tion de�ned on (Θ, B, P ). The discretization step consists in approximating κex(x, θ)

by a stochastic �eld κ(x, ξ(θ)), by using classical spectral decomposition techniques (e.g.
Karhunen-Loève) or a Polynomial Chaos decomposition. However, for commonly used
stochastic �elds, these decompositions may only converge in L2(Ω × Θ) and not uni-
formly. Therefore, after truncation, stochastic �eld κ(x, ξ(θ)) may not verify conditions
(41) anymore [5]. A way to circumvent this problem consists in using, if possible, a
stochastic �eld κex(x, θ) = f(γex(x, θ); x) writing as a nonlinear functional of a Gaus-
sian stochastic �eld γex [52,45,103,60,59,84], with f allowing to ensure property (41).
After discretization and renormalization of the stochastic �eld γex(x, θ) ≈ γ(x, ξ(θ)),
we de�ne an approximate stochastic �eld κ(x, ξ) = f(γ(x, ξ); x) de�ned on probability
space (Ξ , BΞ , Pξ) and verifying conditions (41).

Remark 7 - Other existence results.
In [120], one can �nd a construction of stochastic �elds (in the context of linear elas-
ticity) verifying continuity and ellipticity conditions weaker than �κ0 < κ(x, θ) < κ1

almost surely� and still ensuring the uniqueness and existence of solution in V ⊗

L2(Ξ , dPξ). These conditions do not require that κ is bounded uniformly from above
and below (the marginal probability law of κ(x, ·) may have R+ as support). The con-
tinuity of bilinear A requires a stronger regularity assumption on the right-hand side,
while the ellipticity of A requires some assumptions on the stochastic �eld κ.7 The
reader can refer to [16] for more general existence results, requiring the introduction of
new spaces of random variables in order to take into account a larger class of stochastic
�elds.

4.2 Approximation at the deterministic level

4.2.1 Strong formulation of the semi-discretized problem

Classical approximation techniques at the deterministic level (�nite di�erence, �nite
volume, �nite elements...) classically lead to the resolution of the following semi-
discretized problem: �nd a random variable u(ξ) with values in Rn (or a random
vector) verifying almost surely:

A(u(ξ); ξ) = b(ξ), (47)

where A(·; ξ) is a random operator from Rn into Rn and where b(ξ) is a random vector.

7 The weaker ellipticity condition used in [120], writing κ−1 ∈ L2(Ξ, dPξ ; L∞(Ω)) instead
of the classical condition L∞(Ξ, dPξ ; L∞(Ω)) introduced in [9,84,40], seems not su�cient to
obtain a well-posed problem in the classical sense of Hadamard (i.e. in order to guarantee the
continuous dependence on the data). This result has to be con�rmed.
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Example 1 (Galerkin approaches at the deterministic level) Classical Galerkin approaches
(�nite element [123,31], spectral methods [24], ...) start from a weak formulation at the
deterministic level (equation (34)) and introduce an approximation space Vn ⊂ V of
dimension n. The Galerkin approximation of problem (34), which is a random variable
un(ξ) with values in Vn, must verify almost surely

a(un(ξ), vn; ξ) = b(vn; ξ) ∀vn ∈ Vn. (48)

Denoting by {ϕi}
n
i=1 a basis of Vn and by u = (ui)

n
i=1 the vector of components of un

on this basis, the discretized operator and right-hand side of (47) are naturally de�ned
as:

(A(u; ξ))i = a(un, ϕi; ξ), (b(ξ))i = b(ϕi; ξ).

In the case of a linear problem, A is a random matrix whose components writes:

(A(ξ))ij = a(ϕj , ϕi; ξ).

4.2.2 Weak formulation of the semi-discretized problem

A weak formulation at the stochastic level reads: �nd u ∈ Rn ⊗ S such that

A(u,v) = B(v) ∀v ∈ R
n ⊗ S, (49)

with

A(u,v) := E(v(ξ)T A(u(ξ); ξ)), (50)
B(v) = E(v(ξ)T b(ξ)).

4.3 Galerkin approximation

4.3.1 De�nition of the approximation

Galerkin-type spectral stochastic methods start from the weak formulation (49). They
introduce an approximation space SP ⊂ S (see section 3) and de�ne the Galerkin
approximation u ∈ Rn ⊗ SP as follows:

A(u,v) = B(v) ∀v ∈ R
n ⊗ SP , (51)

or equivalently, coming back to the de�nitions (50) of A and B,

E
(
v

T
R(u)

)
= 0 ∀v ∈ R

n ⊗ SP , (52)

with R(u(ξ); ξ) = b(ξ) − A(u(ξ); ξ).

Equation (52) is equivalent to cancelling the orthogonal projection on Rn ⊗ SP of
the residual R(u). It is equivalent to verify equation (47) in a weak sense. Classical
mathematical arguments allow to precise the properties of the Galerkin approximation:
convergence, stability, a priori error estimation [12,34,6,40]. In particular, the Galerkin
approximation appears to have good stability properties with respect to perturbations
and integration error, properties which are very interesting from a numerical point of
view.
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Property 1 (Linear symmetric elliptic problem) In the case of a linear symmetric elliptic
problem, bilinear form A de�nes an inner product < ·, · >A on Rn ⊗ S. The Galerkin
approximation is then the projection on Rn ⊗ SP of the solution of problem (49) with
respect to inner product < ·, · >A. The approximation then minimizes the distance to
the solution of (49), the distance being de�ned with the norm induced by A.

4.3.2 System of equations

Denoting {Hα}α∈IP
a basis of SP , the solution u ∈ Rn ⊗ SP is searched under the

form of a decomposition

u(ξ) =
∑

α∈IP

uαHα(ξ), uα ∈ R
n.

Problem (51) is then equivalent to the following system of equations: ∀α ∈ IP ,

E
(
Hα(ξ)A

( ∑

β∈IP

uβHβ(ξ); ξ
))

= E
(
b(ξ)Hα(ξ)

)
. (53)

This is a system of n × P equations, possibly non-linear. Denoting u ∈ RnP the block
vector gathering components uα := (u)α, system (53) can be recasted as a block system
of equations:

A(u) = b, (54)

with

(A(u))α = E
(
HαA

( ∑

β∈IP

uβHβ

))
, (55)

(b)α = E (bHα) . (56)

Remark 8 - Use of piecewise polynomial approximations.
When using �nite element-type piecewise polynomial approximations (see section 3.3),
the space SP can be written SP = ⊕K

k=1S
k
Pk

, where S
k
Pk

denotes a subspace of polynomial
functions having for support an element Ξk of a partition of Ξ . The solution u can then
be written u =

∑K
k=1 uk, where the uk ∈ S

k
Pk

are de�ned by K uncoupled problems:
∀k ∈ {1, ..., K},

A(uk,vk) = B(vk) ∀vk ∈ R
n ⊗ S

k
Pk

. (57)

One then have to solve K uncoupled systems of equations of type (53), each system
involving the basis functions {Hk

α}α∈IPk
of S

k
Pk

.
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4.3.3 The case of linear problems

In the case of linear problems, system (53) writes:
∑

β∈IP

E(AHαHβ)uβ = E(bHα), ∀α ∈ IP . (58)

System (54) becomes a system of n × P linear equations

Au = b, (59)

where A is a matrix whose block components write

(A)αβ = E(AHαHβ).

In practice, random matrix A is decomposed on the basis of functions {Hα}α∈I:

A(ξ) =
∑

α∈IPA

AαHα(ξ), (60)

where IPA
⊂ I denotes a �nite set of indices. Blocks of matrix A can then be written

(A)αβ =
∑

γ∈IPA

AγE(HγHαHβ). (61)

For some classical stochastic basis functions, the terms E(HγHαHβ) are often known
analytically. They can also be pre-computed numerically.

Remark 9 - Truncation of the decomposition of the operator.
Random matrix A a priori admits a convergent decomposition on the complete basis
{Hα}α∈I of L2(Ξ , dPξ). By truncating this decomposition to the subset IPA

, one a
priori introduces an approximation of the operator (variational crime), which could
lead to a solution di�erent from the solution of the initial problem (51). In fact, one
can easily show that if {Hα}α∈I is an orthogonal (piecewise) polynomial basis and if
SP corresponds to polynomials with degree p, a decomposition of A on a polynomial
basis of degree 2p is su�cient to obtain the solution of the initial problem. Indeed, from
orthogonality of basis functions,

E(AHαHβ) =
∑

γ∈I

AγE(HγHαHβ)

=
∑

γ∈IPA

AγE(HγHαHβ).

Property 2 (Taking into account exactly stochastic �elds) When a stochastic �eld inter-
venes in the de�nition of the operator of the initial probabilistic model, one generally
has to perform a discretization of the �eld in order to work in a �nite-dimensional
probability space. In fact, one can show that the Galerkin approach allows to take
into account exactly the initial stochastic �eld. Let us illustrate this property on the
example of section 4.1.4. Let us �rst consider the problem with the initial stochastic
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�eld κex(x, θ) (possibly discretized in space) de�ned on the probability space (Θ, B, P ).
The solution uex ∈ Rn ⊗L2(Θ, dP ) of the semi-discretized problem is then de�ned by

Aex(uex,v) = E(vT
b) ∀v ∈ R

n ⊗ L2(Θ, dP ), (62)
with Aex(u,v) = E(vT

Aexu). (63)

Let us now introduce a polynomial chaos representation of κex (see appendix A) and
let us consider that the discretized �eld κ is obtained by truncating this representation
to the polynomial chaos of degree 2p in dimension m:

κex(x, θ) =
∑

α∈Iex

κα(x)Hα({ξi}i∈N)

≈
∑

α∈IPA

κα(x)Hα(ξ(θ)) := κ(x, ξ(θ)),

where {Hα}α∈Iex
denotes the basis of L2(Θ, dP ) constituted by Hermite polynomial

in independent standard Gaussian random variables {ξi}i∈N [130,23] (Iex is the set of
multi-indices α ∈ NN with �nite length |α|). Then, one considers for SP a polynomial
chaos of degree p in dimension m. From orthogonality of Hermite polynomials, one can
show that the restriction to Rn ⊗ SP of bilinear form Aex(·, ·) coincides with bilinear
form A(·, ·), de�ned from κ. In other words, the Galerkin approximation u ∈ Rn ⊗ SP ,
de�ned by (51), is the projection of uex on Rn ⊗ SP with respect to the inner prod-
uct induced by Aex. Therefore, the Galerkin procedure allows to take implicitly into
account the initial non discretized stochastic �eld. When using discretized versions of
stochastic �elds, the Galerkin method allows to avoid the classical problem of violation
of existence conditions (see remark 6). We can notice that this �good� property may
still be veri�ed for some nonlinear problems.

Remark 10 - The particular case of stochastic interpolation/collocation.
In the case of a linear problem with a linear dependency of A in ξ, i.e.

A(ξ) =
∑

γ∈Nm

|γ|61

ξ
γ
Aγ , ξ

γ :=

m∏

i=1

ξγi

i , Aγ ∈ R
n×n,

the use of an approximation with Lagrange interpolants (see section 3.2.3) allows ob-
taining the Galerkin solution u by a simple �stochastic collocation� method, equivalent
to the resolution of P uncoupled deterministic problems. This comes from orthogonal-
ity properties (30) and (31) of the basis functions. Denoting by {yα}α∈IP

the inter-
polation points associated with a Gaussian quadrature (obtained by tensorization of
one-dimensional interpolation grids), and by {ωα}α∈IP

the weights of the associated
quadrature, one has

E(ξγHαHβ) = y
γ
αωαδαβ , ∀γ such that |γ| 6 1.

In this case, system (58) is equivalent to the following P uncoupled systems:
( ∑

γ∈Nm

|γ|61

y
γ
αAγ

)
uαωα = E(bHα), α ∈ IP .

For the example of section 4.1.4, this (very) particular case occurs if the stochastic �eld
writes κ(x, θ) = κ0(x) +

∑m
i=1 ξi(θ)κi(x).
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4.4 Classical solution techniques

4.4.1 Linear problems

In the linear case, iterative solvers are generally used for solving system (59). Krylov-
type solvers (Conjugate Gradient, Conjugate Gradient Square,...) do not require the
assembling of matrix A. An e�cient preconditioning of the system is however necessary.
Krylov-type algorithms are then applied to the following preconditioned system:

PAu = Pb. (64)

In the case when an orthonormal basis {Hα} is used, a classical choice of preconditioner
[44,99,63] consists in taking a block diagonal matrix P, the diagonal blocks being
de�ned by

(P)αβ = δαβE(A)−1.

This preconditioner is computationally very cheap and is relatively e�cient in the case
where the variability of operator A is small. Indeed, if matrix A is decomposed into
its mean part E(A) and its centered part, matrix A of system (64) writes:

(A)αβ = δαβ E(A) + E(HαHβ(A − E(A))).

and tends to P
−1 when the variance of A tends to zero. For large variabilities of the

operator, the convergence of Krylov-type algorithms may drastically deteriorate. One
can �nd in [101] a similar construction of the preconditioner in the case of mixed
formulations.

4.4.2 Nonlinear problems

In the nonlinear context, classical nonlinear solvers may be used for solving system (53).
Let us here simply illustrate the use of classical Newton or Quasi-Newton methods [35].
Knowing the iterate u(k) ∈ Rn ⊗SP , an increment w ∈ Rn ⊗SP is searched by solving
the following linear problem:

A(k)(w,v) = B(v) − A(u(k),v) ∀v ∈ R
n ⊗ SP , (65)

where A(k)(·, ·) is an approximation of the bilinear form tangent to A at uk, which can
be written under a discrete form:

A(k)(w,v) = E(vT
A

(k)
u),

where Ak is a matrix (possibly random) approximating the tangent matrix at u(k).
From an algebraic point of view, this is equivalent to solving system (54) iteratively,
by solving at each iteration a linear system of size n × P of the form

A
(k)

w = r
(k), (66)

where r
(k) := b−A(u(k)) is the residual at iteration k. Systems (66) can then be solved

with the Krylov-type iterative solvers mentioned in section 4.4.1.
In general, the selection of a nonlinear solver for a given application is inspired from

classical solvers which are used in the deterministic context. Let us note that a non
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negligible part of the computational times comes from the evaluation of residuals and
therefore from the computation of right-hand sides of systems (66). These evaluations
may be easy for certain types of nonlinearities (simple form of the nonlinear operator)
[73,74,56]. In a more general context, projection techniques using adapted stochastic
quadratures may be used to perform these evaluations [61,84].

Let us mention some examples of nonlinear solvers. In [84], one can �nd the applica-
tion of a BFGS solver in the case of an elliptic di�usion problem with cubic nonlinearity.
The advantage is to build A

(k) by simple low rank modi�cation of an initial matrix
A

(0) (based for example on the linear part of operator A). Krylov-type preconditioned
iterative solvers are then used to solve systems (66). In [90], a classical Newton-type
solver is used to solve the same problem. Still for the same problem, it is proposed in
[94] to use for A(k) an approximation of the Gateaux derivative of A at u(k). This
approximation consists in replacing random parameters of operator A by their mean
values and to replace u(k) by its mean value. This construction, relatively e�cient for
moderate variabilities, has the advantage to yield to a deterministic matrix A(k) and
then to a block-diagonal system (66) (resolution of uncoupled deterministic problems).

4.4.3 Sparse (or not sparse) structure of linear systems

Krylov-type iterative techniques for the resolution of system (59) (or (66)) only ask for
computing matrix-vector products of type Au. This allows to take part of the (possibly)
sparse structure of the matrix. The matrix has often a sparse structure at two levels,
coming from the possible sparsity of random matrix A (classical in �nite elements,
�nite di�erence,...) but also from properties of basis functions {Hα}. Indeed, the term
E(HγHαHβ) generally has a sparse structure for classical approximation basis. Figure
10 illustrates the sparsity pattern of matrix

∑
γ∈IPA

E(HγHαHβ), re�ecting the block-
sparsity pattern of system (59). We can note that the sparse structure strongly depends
on the dependence of A with respect to ξ. If a high order is used for the expansion of
A on the basis {Hα}, we clearly loose the block-sparsity of the system.

5 Model reduction techniques

5.1 Limitations of classical Galerkin spectral stochastic methods

Galerkin-type spectral stochastic methods have the capability to provide highly ac-
curate numerical predictions. As shown in section 4, they ask for the resolution of a
problem which can be formally written: �nd an approximate solution u such that

u ∈ Vn ⊗ SP , A(u, v) = B(v) ∀v ∈ Vn ⊗ SP , (67)

where Vn (resp. SP ) is a deterministic (resp. stochastic) approximation space of dimen-
sion n (resp. P )8. For complex applications, if one tries to obtain accurate numerical
predictions, these approaches may require a �ne discretization at the deterministic
level (large n) or at the stochastic level (large P ). That leads to the resolution of very
8 Let us mention that the discretized problem (67) can be interpreted as (51), by assimilating

Vn to Rn. Then, the discrete formulation (67) is quite general and is also valid for non Galerkin
approaches at the deterministic level.
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(a) m = 3, p = 4,
pA = 1

(b) m = 3, p = 4,
pA = 2

(c) m = 3, p = 4,
pA = 3

(d) m = 3, p = 4,
pA = 8

(e) m = 5, p = 6,
pA = 1

(f) m = 5, p = 6,
pA = 3

(g) m = 5, p = 6,
pA = 5

(h) m = 5, p = 6,
pA = 12

Fig. 10 Sparsity pattern of matrix ∑
γ∈IPA

E(HγHαHβ), α, β ∈ IP : use of a Hermite poly-
nomial chaos in dimension m, with a degree p for IP and a degree pA for IPA

large system of n× P equations, leading to computational times and memory require-
ments which are not compatible with available computational resources. Moreover,
they require a good knowledge of the mathematical structure of the problem in order
to choose a well-adapted discretized formulation (67) (e.g. stabilized formulation when
needed), to derive ad hoc e�cient solvers or to extend classical deterministic solvers
to the stochastic context (nonlinear algorithms, dedicated preconditioners, ...). They
often require speci�c theoretical and software developments for a particular class of
problems.

In order to limit computational costs, a �rst approach consists in judiciously choos-
ing the approximation space SP , leading to an accurate expansion of the solution while
minimizing the dimension P . In particular, a judicious choice of random variables
de�ning the basic probability space (Ξ , BΞ , Pξ) may allow constructing orthogonal
polynomial basis exhibiting good convergence rates [132]. In the case of non-smooth
solutions, these convergence rates may deteriorate. They can be improved by using
adapted basis such that �nite elements, multi-elements or multi-wavelets [34,128,71,
72,9] (see section 3.3). However, a good approximation space can not be chosen with-
out error estimation criteria. This kind of approach then makes sense in the context of
adaptive approximation procedures [62,128,72,129,81].

5.2 Model reduction for Galerkin spectral stochastic methods

In order to drastically reduce computational costs of Galerkin-type stochastic methods,
another approach consists in building reduced approximation basis intelligently. That
consists in searching a set of M deterministic functions wi ∈ V (or stochastic functions
λi ∈ S), with M ≪ n (or M ≪ P ) and then to compute the associated stochastic
functions λi (or deterministic functions wi). An approximation uM of problem (67) is
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then searched under the form:

uM =

M∑

i=1

wiλi, wi ∈ V, λi ∈ S. (68)

On one side, when a reduced basis of deterministic functions is available, it de�nes
an approximation space VM = span{wi}

M
i=1 ⊂ V. Approximation (68) can then be

naturally de�ned by the following Galerkin orthogonality criterium:

uM ∈ VM ⊗ S,

A(uM , vM ) = B(uM ) ∀vM ∈ VM ⊗ S. (69)

By introducing an approximation space SP ⊂ S in equation (69), it leads to a system
of M × P equations.

On the other side, when a reduced basis of stochastic functions is available, it
de�nes an approximation space SM = span{λi}

M
i=1 ⊂ S. Approximation (68) can still

be naturally de�ned by the following Galerkin orthogonality criterium:

uM ∈ V ⊗ SM , (70)
A(uM , vM ) = B(uM ) ∀vM ∈ V ⊗ SM . (71)

When introducing an approximation space Vn ⊂ V in equation (71), it leads to a
system of n × M equations.

The question is then: how to de�ne reduced basis leading to an optimal decompo-
sition of the solution for a given order M of decomposition ?

5.2.1 Classical spectral decomposition and related techniques

One way to de�ne optimal basis, explored in di�erent works [84,47,38], is based on the
following property: the optimal decomposition of type (68) in the sense of a natural
norm ‖ · ‖ in V ⊗ S is a classical spectral decomposition of the solution. Optimal basis
are de�ned by:

‖u − uM‖2 = min
{λi}

M
i=1∈(S)M

{wi}
M
i=1∈(V)M

‖u −
M∑

i=1

wiλi‖
2. (72)

Of course, the obtained decomposition depends on the chosen norm. Let < ·, · >V

denote an inner product on Hilbert space V, with associated norm ‖ · ‖V. A natural
choice consists in introducing for ‖ · ‖ the natural norm on V ⊗ L2(Ξ , dPξ):

‖u‖2 = E(< u, u >V) :=

∫

Ξ

< u, u >V dPξ. (73)

For this choice, it is well known that the optimal decomposition de�ned by (72) is the
Hilbert Karhunen-Loève decomposition [75]9, truncated at order M (see appendices A

9 Let us consider that V is a Hilbert space of functions de�ned on a domain Ω (time,
space or space-time domain). If V →֒ L2(Ω) and if we choose for < ·, · >V the natural inner
product in L2(Ω), the optimal decomposition is the classical Karhunen-Loève decomposition
(see appendix A).
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and B). Optimal reduced basis functions span the dominant eigenspace of the following
eigenproblem:

Tu(w) = σw, (74)

where Tu : V → V is the correlation operator de�ned by: ∀w, w∗ ∈ V,

< w∗, Tu(w) >V = E(< w∗, u >V< u, w >V) (75)
:=< w∗, < E(u ⊗ u), w >V>V, (76)

where E(u⊗u) ∈ V⊗V is the correlation function of u. If we choose the {wi}
M
i=1 such

that span{wi}
M
i=1 is the M -dimensional dominant eigenspace of Tu, and if we de�ne

the associated stochastic functions {λi}
M
i=1 such that

‖u −
M∑

i=1

wiλi‖
2 = min

{λi}M
i=1∈(S)M

‖u −
M∑

i=1

wiλi‖
2, (77)

we classically show that the obtained decomposition uM veri�es:

‖u − uM‖2 = ‖u‖2 −
M∑

i=1

σi, (78)

where the σi are the M dominant eigenvalues of Tu.

Therefore, if one could compute the spectral decomposition of the solution, one
could consider the stochastic (resp. deterministic) functions of this decomposition as
good candidates for the de�nition of reduced basis of stochastic (resp. deterministic)
functions. The problem is that the solution and a fortiori its correlation structure, is
not known a priori.

Several techniques have been proposed in order to obtain an approximation of the
spectral decomposition. In [84], the authors propose to compute an approximation of
the correlation function E(u ⊗ u) based on a truncated Neumann expansion of the
solution of (67). Dominant eigenfunctions of the corresponding approximation of Tu

are then computed and can be considered as approximations of functions appearing in
the ideal spectral decomposition. Then, they can be used for solving the initial problem
in the reduced approximation space VM ⊗ SP (problem (69)). In its actual form, this
procedure is limited to the linear case. In [47,38], the authors propose to �rst solve
the initial problem on a coarse deterministic approximation space Vn′ (e.g. by using a
�nite element approximation on a coarse mesh). A spectral (Hilbert Karhunen-Loève)
decomposition of the coarse solution in Vn′ ⊗SP is then performed. After a truncation
of the decomposition at order M , the obtained random variables λi ∈ SP can be
considered as an approximation of random variables appearing in the ideal spectral
decomposition of the solution in Vn ⊗ SP . They can then be used as new stochastic
basis functions for the resolution of the initial problem in the reduced approximation
space Vn ⊗ SM (problem (71)).

Remark 11 - Equivalent eigenvalue problem.
The spectral decomposition can be equivalently obtained by solving an eigenproblem on
λ:

T ⋄
u (λ) = σλ, (79)
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where T ⋄
u : S → S is de�ned by: ∀λ, λ∗ ∈ S,

E(λ∗T ⋄
u (λ)) =< E(λ∗u), E(uλ) >V . (80)

5.2.2 Generalized spectral decomposition method

The methods presented in section 5.2.1 can be considered as a posteriori model reduc-
tion techniques since they ask for a �rst evaluation of the solution in order to build the
reduced basis.
The Generalized Spectral Decomposition (GSD) method [89�91,94] can be considered
as an a priori model reduction technique in the context of Galerkin spectral stochastic
methods. The GSD method allows the construction of the decomposition (68) without a
priori knowing the solution nor an approximation of it. The basic principle of the GSD
method consists in de�ning optimal reduced basis from a double Galerkin orthogonal-
ity criterium. More precisely, it consists in de�ning reduced approximation spaces VM

and SM such that they verify simultaneously equations (69) and (71). One then shows
that reduced basis are solution of an invariant subspace problem. This problem can
be assimilated to an eigenproblem whose dominant eigenspace leads to the researched
reduced basis functions. The GSD method has been initially introduced for solving a
particular class of linear elliptic stochastic partial di�erential equations [89]. In this
context, the method appears as a natural extension of Hilbert Karhunen-Loève decom-
position (see appendix B). Dedicated algorithms, inspired from classical algorithms for
solving eigenproblems, have been proposed for the construction of reduced basis func-
tions. The main advantage of these algorithms is that they only require the resolution
of a few deterministic problems, with a well mastered mathematical structure, and of a
few stochastic algebraic equations. Computational costs are then drastically reduced.
Moreover, stochastic equations and deterministic problems being uncoupled, the GSD
method allows for recovering a part of non intrusivity for Galerkin spectral approaches.

In [90], the method has been used for solving a nonlinear stochastic elliptic problem
for which a classical global nonlinear solver led to the resolution of successive linear
stochastic problems. Each linear stochastic problem were solved by GSD algorithms
proposed in [90], with a re-use and an enrichment of the reduced basis of deterministic
functions at each iteration of the nonlinear solver. The GSD method has been extended
to a wider class of linear problems in [91], where it has been also proposed some new
e�cient algorithms for building the generalized decomposition. More recently, a natural
extension to the non-linear context has been proposed in [94].
The basics of the method are detailed in section 6.
Remark 12 - In fact, the GSD method can be seen as a model reduction technique
for solving problems de�ned in tensor product spaces. The GSD method for stochastic
problems is inspired from a separated representation technique, called the radial approx-
imation technique, proposed in the context of deterministic space-time problems [68,70,
93,3].

5.3 Other model reduction techniques

5.3.1 Non intrusive stochastic approaches and model reduction

Here, we brie�y come back to so-called non intrusive stochastic approaches (e.g. Monte
Carlo or direct spectral stochastic approaches, ...). These approaches are based on the
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strong formulation (34) at the stochastic level and require the resolution of a huge
number of deterministic problems of type: u(ξk) ∈ Vn,

a(u(ξk), v; ξk) = b(v; ξk), ∀v ∈ Vn. (81)

Their e�ciency could be signi�cantly improved by model reduction techniques clas-
sically used in parametric or multi-resolution analysis, i.e. by using in (81) a low
dimensional approximation space VM ⊂ Vn, with M ≪ n. Approximate solutions of
problems (81) can then be de�ned by: uM (ξk) ∈ VM ,

a(uM (ξk), vM ; ξk) = b(vM ; ξk), ∀vM ∈ VM . (82)

Model reduction techniques based on the Proper Orthogonal Decomposition (POD)
[131] may be used for constructing a reduced approximation space VM . It consists in
solving several �ne deterministic problems (81), leading to a collection of functions
u(ξk) ∈ Vn. Then, a proper orthogonal decomposition (or singular value decomposi-
tion, or discrete Karhunen-Loève decomposition) of this collection of functions allows
to capture the M most signi�cant modes {wi}

M
i=1, thus de�ning VM = span{wi}

M
i=1.

Error criteria must clearly be provided in order to estimate the error associated with
uM and to eventually enrich the approximation space VM .
An alternative model reduction technique has been proposed in the context of multi-
resolution analysis and Krylov-type iterative solvers [111]. When a problem (81) is
solved with a Krylov iterative algorithm, the generated Krylov subspace de�nes a low-
dimensional approximation space VM leading to an accurate solution for this particular
problem. This subspace may be e�ciently re-used for subsequent deterministic prob-
lems (81) [110,106,51]. First, it can be used for computing an initial approximation
by solving the reduced problem (82). Then, starting from an updated residual, Krylov
algorithms can be used (with eventual projections in order to avoid exploring again the
initial subspace VM ). The reduced approximation space VM can be updated after each
resolution. A di�cult question concerns the selection of pertinent subspaces of VM for
the subsequent resolutions, in order to avoid a dramatic increase in the dimension of
VM .
Let us �nally mention another model reduction technique, called the �Reduced Basis�
method [79,80,11], which has been initially introduced for parametric analysis. This
method, based on rigorous error estimation criteria, proposes a construction of approx-
imation space VM leading to a desired accuracy for uM (ξk) for all k. The advantage is
that it never requires the resolution of �ne problems (81). However, the method requires
theoretical developments which are speci�c to the considered problem. The �Reduced
Basis� method has been recently applied to the resolution of linear stochastic elliptic
symmetric problems with the Monte-Carlo method [108].

5.3.2 Stochastic Reduced Basis Method

Let us mention and give some comments on the Stochastic Reduced Basis Method [86,
87,113,112], proposed for solving a class of linear stochastic problems. The �rst point
of the method consists in computing a basis of functions wi ∈ Vn ⊗ S by successive
applications of the operator to the right-hand side of problem (67), thus generating
a so-called �stochastic Krylov subspace�. This approach is di�erent from the model
reduction techniques mentioned in section 5.2 since functions wi are not deterministic
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but belong to Vn ⊗ S. Then, this does not circumvent the problem of memory require-
ments. In fact, if a classical spectral representation is used at the stochastic level (i.e.
successive projections of the wi on Vn ⊗ SP ), as proposed in [112,113], the de�ned
stochastic Krylov subspace span{wi}

M
i=1 is no more than a classical M -dimensional

Krylov subspace associated with problem (67). To be more precise, the de�ned Krylov
subspace is exactly the Krylov subspace of the preconditioned system (64), with the
classical preconditioner used in [46,44,63]. Indeed, if we rewrite problem (67) under the
form of the linear system of equations (59), the de�nition of functions wi ∼ wi ∈ RnP

given in [112,113] is as follows: wi = (PA)i−1
b, i = 1...M .

In [113], the authors then propose to de�ne the approximation uM =
∑M

i=1 wiλi,
with λi ∈ R, where the λi are solutions of the following system of M equations:

A(

M∑

i=1

wiλi, wj) = B(wj), ∀j ∈ {1...M}. (83)

The obtained solution uM is the Galerkin approximation of the initial problem in the
approximation space span{wi}

M
i=1 ⊂ Vn ⊗ SP . In fact, system (83) is equivalent to the

following system, written in a matrix form:

w
T
j A

M∑

i=1

wiλi = w
T
j b, ∀j ∈ {1...M}. (84)

The method proposed in [113] then exactly coincides with a classical Krylov-type al-
gorithm, namely the Arnoldi algorithm, for solving (59) (equivalently (67)). Therefore,
this method does not really constitute a new methodology and can not really be as-
similated with a model reduction technique, although Krylov-type iterative solvers
are sometimes seen as a posteriori model reduction techniques. In [113], the authors
conclude that a low order approximation (M = 2 or 3) is su�cient for obtaining an
accurate solution. It is equivalent to say that a Krylov-type algorithm (e.g. Precon-
ditioned Conjugate Gradient for symmetric problems) gives an accurate solution of
(59) in 2 or 3 iterations. That is clearly problem-dependent and it is known that for
complex problems and moderate variabilities, Krylov-type algorithms may require a
much larger number of iterations in order to provide an accurate approximation.

However, a modi�cation is proposed in another paper [112]. Starting from the above
de�ned reduced basis of functions {wi}

M
i=1 ∈ (Vn⊗SP )M , the authors propose to search

an approximation uM =
∑M

i=1 wiλi, with random functions λi ∈ SP de�ned by the
following problem:

A(

M∑

i=1

wiλi,

M∑

i=1

wiλ
∗
i ) = B(

M∑

i=1

wiλ
∗
i ) ∀λ∗

i ∈ SP . (85)

In this case, the method can not be interpreted as a usual Krylov-type algorithm.
This modi�cation slightly improves the accuracy of the obtained decomposition. Let
us note that uM is a nonconforming Galerkin approximation since uM /∈ Vn⊗SP . The
construction and the resolution of problem (85) for �nding functions λi are di�cult and
computationally expansive (more expansive than classical Galerkin approaches since
the wi are random), which leads to limit the number of computed functions wi.
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6 Generalized spectral decomposition method

In this section, we recall the basics of the GSD method [89�91,94], mentioned in section
5.2.2, and give some additional and clarifying comments on the method.

6.1 De�nition of the generalized spectral decomposition

A natural way to de�ne optimal reduced basis is to use a double orthogonality criterium,
i.e. to verify both equations (71) and (69) simultaneously. Let us note Λ = (λi)

M
i=1 ∈

(S)M , W = (wi)
M
i=1 ∈ (V)M and uM := W · Λ. Equations (71) and (69) can be

equivalently rewritten:

A(W · Λ, W ∗ · Λ) = B(W ∗ · Λ) ∀W ∗ ∈ (V)M , (86)
A(W · Λ, W · Λ∗) = B(W · Λ∗) ∀Λ∗ ∈ (S)M . (87)

Let us introduce the mapping F : (S)M → (V)M where W = F (Λ) is the solution of
equation (86) for a given Λ. Let us also introduce the mapping f : (V)M → (S)M where
Λ = f(W ) is the solution of equation (87) for a given W . The simultaneous veri�cation
of (87) and (86) imposes the following relations:

W = F (Λ) and Λ = f(W ). (88)

Equations (88) can be interpreted as a problem on W :

T (W ) = W, with T (W ) = F ◦ f(W ), (89)

or equivalently as a problem on Λ:

T ⋄(Λ) = Λ, with T ⋄(Λ) = f ◦ F (Λ). (90)

From homogeneity properties of T and T ⋄, problems (89) and (90) can be interpreted
as invariant subspace problem, i.e. they can be equivalently written as �xed point
problems on VM and SM (see [91]). In fact, these problems can be interpreted as eigen-
like problems, where an invariant subspace is assimilated with a generalized eigenspace.
The dominant eigenspace of T (resp. T ⋄) is associated with the researched reduced basis
W (resp. Λ), which leads to a so-called generalized spectral decomposition uM = W ·

f(W ) (resp. uM = F (Λ)·Λ). The method can be interpreted as a natural generalization
of Hilbert Karhunen-Loève decomposition (see appendix B for a comprehensive analysis
in the case of linear symmetric elliptic problems).

6.2 Algorithms for building the decomposition

Algorithms for building the generalized spectral decomposition are inspired from clas-
sical methods for solving eigenproblems [109,50] (for capturing the upper spectrum of
operators).
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6.2.1 Subspace iterations

Problems (88) and (90) being equivalent, let us focus on the problem on T . The aim
is to capture the dominant eigenspace of T , leading to the desired reduced basis of
functions W = (wi)

M
i=1. A natural algorithm, proposed in [91], is the subspace itera-

tion technique. Starting from an initial guess W (0), it consists in building the sequence
W (k+1) = T (W (k)). This sequence generally converges toward the dominant eigenspace
of T . At each iteration, it requires the application of operator T = F ◦f , and therefore,
the application of operators f and F successively10. The computation of Λ = f(W )

requires the resolution of problem (87), which is a stochastic problem on a reduced
deterministic basis (system of M stochastic algebraic equations, eventually nonlinear).
An approximation Λ ∈ (SP )M can be obtained by using a Galerkin stochastic ap-
proximation, thus requiring the resolution of a system of M × P equations. Then, the
computation of W = f(Λ) requires the resolution of problem (86), which is a deter-
ministic problem on a reduced stochastic basis (system of M coupled deterministic
problems, eventually nonlinear). An approximation W ∈ (Vn)M can be obtained by
using a deterministic approximation technique, thus requiring the resolution of a sys-
tem of n × P equations. At convergence, we obtained the desired generalized spectral
decomposition uM = W · f(W ).

6.2.2 Power method with de�ation

In order to avoid the resolution of coupled systems of deterministic equations, an
alternative consists in building the couples (λi, wi) one by one. Let ur = Wr ·Λr be an
already computed decomposition of order r. The following optimal couple (λ, w) ∈ S

can be de�ned by:

A(ur + wλ, w∗λ) = B(w∗λ) ∀w∗ ∈ V, (91)
A(ur + wλ, wλ∗) = B(wλ∗) ∀λ∗ ∈ S. (92)

The problem can still be interpreted as an eigen-like problem

T (w; ur) = w, with T (·; ur) = F (f(·; ur); ur), (93)

where λ = f(w; ur) is the solution of problem (92) for a �xed w and where w = F (λ; ur)

is the solution of problem (91) for a �xed λ.
A natural power method, �rst introduced in [89], can then be applied in order to �nd the
dominant eigenfunction w of T (·; ur). From an initial guess w(0), it consists in building
the sequence w(k+1) = T (w(k); ur). At each iteration, it requires the resolution of a
simple stochastic algebraic equation (92) (application of operator f for a �xed w) and
of a simple deterministic problem (91) (application of mapping F for a given λ). In
fact, operator T (·; ur) can be interpreted as a de�ated version of the initial operator
T ≡ T (·; 0) (see [91]).

Remark 13 - Let us note that this algorithm, which is here interpreted as a power
method with de�ation, have been proposed in other contexts in order to �nd separated
representations of solutions in tensor product spaces (see e.g. [68,70,93,3] for space-
time separation, [27] for space-space separation, [2] for multi-dimensional separation).
10 In practise, an orthogonalization step is introduced at each iteration in order to avoid a
degeneration of the subspace VM := span(W ).
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In fact, for the case of elliptic symmetric problems (see appendix B), this algorithm
appears as a particular case of a Greedy algorithm [20].

The overall construction can then be interpreted as a power method with de�a-
tion for classical eigenproblems. However, eigen-like problem (93) does not have clas-
sical properties of eigenproblems. In particular, the M -dimensional subspace which is
spanned by the dominant eigenfunctions of successive de�ated operators T (·; ur), r =

0...M − 1, does not generally coincide with the M -dimensional dominant eigenspace of
the initial operator T (·; 0). In other words, the spectral decomposition uM = W ·f(W ),
where W is the dominant eigenspace of T (·; 0), does not coincide with the spectral de-
composition uM =

∑M
i=1 wif(wi; ui−1), where the wi are the dominant eigenfunctions

of T (·; ui−1) (see related comments in appendix B). In practise, a better accuracy is
obtained by updating the random variables, i.e. by computing a new Λ = f(W ; 0) after
the construction of W by the power method with de�ation (see illustrations [89,94] for
linear or nonlinear model problems).

6.2.3 Arnoldi algorithm

A more e�cient algorithm has been proposed in [89]. It is inspired from the Arnoldi
algorithm for solving classical eigenproblems. Starting from an initial function w1 =

f(λ1), the idea is to build the �generalized Krylov subspace� KM (T, w1), de�ned by:

KM (T, w1) = span{wi}
M
i=1 (94)

wi+1 = Π⊥
Ki

T (wi), (95)

where Π⊥
Ki

denotes an orthogonal projection on the complementary space of Ki ⊂ V.
The construction of the Krylov subspace asks for M−1 applications of operator T = F ◦

f to single functions in V. It then asks for the resolution of M−1 classical deterministic
problems (application of F ) and M −1 stochastic algebraic equation (application of f).
Then, associated random variables Λ = f(W ) can be computed by solving a stochastic
problem (87) for the given reduced approximation basis W = (wi)

M
i=1. We observe

that this construction allows to obtain at a very low cost a good approximation of the
dominant eigenspace, thus leading to a good approximation of the ideal generalized
spectral decomposition. In practise, restarts of the above Arnoldi algorithm are often
required. When the Arnoldi procedure has stopped, and an order r decomposition
ur has been obtained, an Arnoldi procedure can be performed again on the de�ated
eigenproblem (93) (see [91]).

Remark 14 - Choice of the orthogonal projection.
For classical eigenproblems, this algorithm exactly coincides with a classical Arnoldi
algorithm. In this case, the Krylov subspace does not depend on the orthogonal projector.
In the case of the GSD, which corresponds to a non classical eigenproblem, the obtained
subspace slightly depends on the projection which is used. However, in practise, classical
metrics are used for the projections and lead to satisfactory results.

6.3 Illustrations of computational aspects

Here we detail the computational aspects on two model examples in order to illus-
trate the application of the GSD method. The method is illustrated in a continuous



42

framework, the discretization being introduced when needed. It allows to underline an
interesting aspect of the GSD method, which provides a �exibility in the choice of de-
terministic approximation techniques (in a non intrusive fashion). The construction of
the generalized spectral decomposition asks for the resolution of problems of di�erent
types which depend on the chosen algorithms (power method, Arnoldi,...). Power-type
algorithm and Arnoldi algorithm, when applied to eige-like problem T (W ) = W , asks
for the resolution of problems λ = f(w) for a given w ∈ V, w = F (λ) for a given
λ ∈ S and Λ = f(W ) for a given W ∈ (V)M . For simplicity, only these three types of
problems will be detailed for the two model examples.

6.3.1 Model example 1: a linear problem

We here consider a linear time-dependent stochastic partial di�erential equation, de-
�ned on a space-time domain Ω × (0, T ). This class of problem has been investigated
in [91]. Computational aspects of the GSD method are here presented in a continuous
framework. The discrete formulation and numerical illustrations (convergence of gen-
eralized decomposition, e�ciency of the method,...) can be found in [91].
We consider the following problem: �nd u such that it veri�es almost surely

∂tu − α1∆u + α2c · ∇u = g on Ω × (0, T ), (96)
u = 0 on ∂Ω × (0, T ), (97)
u = 0 on Ω × {0}, (98)

where the αi(ξ) are random variables de�ned on probability space (Ξ , BΞ , Pξ) and
g(ξ) is a random process (time or space dependent). Here, we introduce for V a suitable
space of functions de�ned on the space-time domain Ω × (0, T ). A weak formulation
can be obtained by introducing bilinear form A(u, v) = E(a(u, v; ξ)) and linear form
B(v) = E(b(v; ξ)), where a and b are de�ned by:

b(v; ξ) =

∫

Ω×(0,T )
v g(ξ), (99)

a(u, v; ξ) = a0(u, v) + α1(ξ)a1(u, v) + α2(ξ)a2(u, v), (100)

where the ai are deterministic bilinear forms on V de�ned by11:

a0(u, v) =

∫

Ω×(0,T )
∂tu v +

∫

Ω×{0+}
u v, (101)

a1(u, v) =

∫

Ω
∇u · ∇v, (102)

a2(u, v) =

∫

Ω
c · ∇u v. (103)

11 The values of functions on Ω × {0+} must be interpreted as their right limits at time 0.
The formulation is classical and corresponds to a weak imposition of the initial condition.
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⋄ Problem of type w = F (λ)

Computing w = F (λ) for a given λ asks for the resolution of a deterministic problem:
�nd w ∈ V such that ∀w∗ ∈ V,

a0(w, w∗) + α̃1a1(w, w∗) + α̃2a2(w, w∗) =

∫

Ω×(0,T )
g̃ w∗, (104)

with deterministic parameters α̃i = E(αiλ
2) and deterministic source term g̃ = E(gλ).

Classical deterministic approximation techniques can be used for obtaining an approx-
imate solution w ∈ Vn (time integration scheme, �nite elements, ...). Let us note that
suitable time integration schemes (eventually adaptive) can be used for each deter-
ministic independently. This constitutes a great advantage of the generalized spectral
decomposition, which authorizes the use of well-mastered deterministic solution tech-
niques.

Remark 15 - In the current version of the GSD method, problems on reduced basis
are de�ned with classical Galerkin projections. For advection-dominated problems, if
the deterministic approximation requires a stabilization (e.g. �nite elements), the GSD
method can still be applied on a stabilized formulation of the initial stochastic problem.

⋄ Problem of type λ = f(w)

Computing λ = f(w) for a given w requires the resolution of:

λ ∈ S, E(λ∗âλ) = E(λ∗b̂) ∀λ∗ ∈ S, (105)

with

b̂(ξ) = b(w; ξ) =

∫

Ω×(0,T )
g(ξ) w, (106)

â(ξ) = a0(w, w) + α1(ξ)a1(w, w) + α2(ξ)a2(w, w). (107)

This is a classical stochastic algebraic equation. Computing random variables â and b̂

requires computing classical space-time integrals. A classical stochastic Galerkin ap-
proach can be used in order to �nd an approximate solution λ ∈ SP ⊂ S. That leads
to a small system of P equations.

Remark 16 - When using a de�ation (e.g. with a power method or a restarted Arnoldi
algorithm), one has to solve problems of type λ = f(w; ur) or w = F (λ; ur). These
problems simply write as the above problems, with updated right-hand sides b(v; ξ) ←

b(v; ξ) − a(ur, v; ξ).

⋄ Problem of type Λ = f(W )

Computing Λ = f(W ) ∈ (S)M for a given W = (wi)
M
i=1 ∈ (V)M requires the resolution

of the following system of stochastic algebraic equations:
M∑

i=1

E(λ∗
j âjiλi) = E(λ∗

j b̂j) ∀λ∗
j ∈ S, ∀j ∈ {1, ..., M},

with

b̂j(ξ) = b(wj ; ξ) =

∫

Ω×(0,T )
g(ξ) wj , (108)

âji(ξ) = a0(wi, wj) + α1(ξ)a1(wi, wj) + α2(ξ)a2(wi, wj). (109)
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By introducing an approximation space SP ⊂ S, we obtain a Galerkin approximate
solution Λ ∈ (SP )M by solving a classical system of M × P equations.

Remark 17 - A straightforward extension of the above computational aspects allows
dealing with a large class of linear problems such that a(u, v; ξ) =

∑m
i=1 αi(ξ)ai(u, v),

where the ai are deterministic bilinear forms.

6.3.2 Model example 2: a non-linear problem

We here consider a classical nonlinear stochastic stationary partial di�erential equation,
with quadratic nonlinearity, de�ned on a spatial domain Ω (e.g. stationary Burgers or
incompressible Navier-Stokes equations). The application to a one-dimensional stochas-
tic Burgers equation and numerical illustrations can be found in [94].

We introduce a semi-linear form A(u, v) = E(a(u, v; ξ)) and a linear form B(v) =

E(b(v; ξ)), where a and b are de�ned by:

b(v; ξ) =

∫

Ω
v g(ξ), (110)

a(u, v; ξ) = α1(ξ)a1(u, v) + a2(u, u, v), (111)

where α1 and g are respectively a random variable and a random �eld de�ned on
probability space (Ξ , BΞ , Pξ). a1 and a2 are bilinear and trilinear forms de�ned by:

a1(u, v) =

∫

Ω
∇u · ∇v, (112)

a2(u, u, v) =

∫

Ω
u · ∇u v. (113)

⋄ Problem of type w = F (λ)

Computing w = F (λ) for a given λ asks for the resolution of a classical nonlinear
deterministic problem: �nd w ∈ V such that ∀w∗ ∈ V,

α̃1a1(w, w∗) + α̃2a2(w, w, w∗) =

∫

Ω
g̃ w∗,

with deterministic parameters α̃1 = E(α1λ2) and α̃2 = E(λ3), and deterministic source
term g̃ = E(gλ). The method authorizes the use of classical deterministic solvers. In this
sense, the GSD method can be said non intrusive. Classical deterministic approximation
techniques can be used for obtaining an approximate solution w ∈ Vn. Let us note that
for each deterministic problem, a speci�c solver can be chosen, adapted to the values
α̃i of parameters.

⋄ Problem of type λ = f(w)

Computing λ = f(w) for a given w requires the resolution of:

λ ∈ S, E(λ∗(â(1)λ + â(2)λ2)) = E(λ∗b̂) ∀λ∗ ∈ S, (114)

with b̂(ξ) =
∫
Ω g(ξ) w, â(1)(ξ) = α1(ξ)a1(w, w) and â(2) = a2(w, w, w). This is a clas-

sical stochastic nonlinear algebraic equation (with quadratic nonlinearity). A classical
stochastic Galerkin approach can be used in order to �nd an approximate solution
λ ∈ SP ⊂ S. That leads to a small system of P nonlinear equations.
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⋄ Problem of type Λ = f(W )

Computing Λ = f(W ) ∈ (S)M for a given W = (wi)
M
i=1 ∈ (V)M requires the resolution

of the following system of stochastic algebraic equations: ∀j ∈ {1, ..., M}, ∀λ∗
j ∈ S,

E
(
λ∗

j

( M∑

i=1

â
(1)
ji λi +

M∑

i,k=1

â
(2)
jikλiλk

))
= E(λ∗

j b̂j),

with b̂j(ξ) =
∫
Ω g(ξ) wj , â

(1)
ji (ξ) = a1(wi, wj) and â

(2)
jik = a2(wi, wk, wj). By intro-

ducing an approximation space SP ⊂ S, we obtain a Galerkin approximate solution
Λ ∈ (SP )M by solving a system of M × P nonlinear equations.

6.3.3 About non intrusivity

As shown in the two above model examples, the GSD method allows to separate the
resolution of classical deterministic problems and stochastic algebraic equations. De-
terministic problems may be solved in a non intrusive fashion. Then, Galerkin spectral
approaches, when using the GSD method, recover a part of non intrusivity.
The convergence of the generalized spectral decomposition is very similar to the conver-
gence of classical Hilbert Karhunen-Loève decompositions of the solution. For a desired
accuracy, the required order of decomposition is clearly problem-dependent. However,
in practice, one observes that a low order (M < 10) is often su�cient to reach satisfac-
tory accuracies (see illustrations in [89,91,94]). In these situations, the GSD method
leads to accurate predictions by solving a very few deterministic problems, compared
to classical non intrusive approaches (L2 projection, Monte-Carlo...).

7 Conclusion

Uncertainty quanti�cation appears today as a crucial point in numerous branches of
science and engineering. By improving the predictability and robustness of numerical
models, it answers technical, economic or societal issues.

In the last two decades, a growing interest has been devoted to a new family of
methods, called spectral stochastic approaches, which rely on a fruitful marriage of
probability theory and functional analysis. This marriage has allowed to transpose into
the stochastic context a set of mathematical and numerical tools which are well mas-
tered within the deterministic context. These methods o�er a uni�ed framework for
the quanti�cation and propagation of uncertainties in a probabilistic context. In other
words, they allow handling both the validation and veri�cation of physical models,
from inputs identi�cation based on observations to the numerical prediction of out-
puts, using a unique formalism.

Although these methods are relatively mature for some classes of problems, nu-
merous theoretical, methodological and technical di�culties still remain to surmount
in order to guarantee their long-lasting transfer towards a wider �eld of applications.
First of all, these methods require to revisit in depth �elds of applications which are well
mastered in the deterministic context. For example, in the �eld of nonlinear structural
dynamics, the current deterministic methods allow to tackle with large-scale simula-
tions while taking into account complex nonlinear behaviors (visco-plasticity, contact,
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damage,...). The treatment of these problems in an uncertain context remains a crucial
issue in the medium or long terms. A challenge consists in proposing generic methods,
applicable to a wide class of problems and exploiting at best the existing know-how
and softwares. The transfer of these methods towards complex industrial applications
will be made possible if consequent e�orts are led on the development of robust so-
lution techniques, allowing to obtain of predictions with reasonable computation times.

Another key question concerns the control and the reduction of the errors intro-
duced in the various steps of the validation/veri�cation chain: measurement error,
modeling error, approximation error, resolution error. Indeed, mastering these various
errors would allow to obtain more reliable predictions of the outputs of the models.
In an uncertain context, the reduction of measurement errors generally requires to in-
crease the number of observations (if possible) as well as the quality of their statistical
treatment. Modeling errors can be reduced through a better understanding of the phys-
ical phenomena and sources of uncertainties, and through the development of robust
identi�cation procedures in a probabilistic context. The control of approximation re-
quires the development of robust a posteriori error estimators and associated adaptive
approximation procedures, in order to improve the quality of the numerical models. Fi-
nally, the reduction of resolution errors asks for a better control of the solvers in terms
of precision and robustness. These questions of error controlling is certainly an impor-
tant axis of development for the spectral stochastic approaches. These approaches have
the advantage to inherit from an existing know-how in deterministic simulations and
in other branches of probabilistic analysis.

Another di�culty, which is not restricted to spectral approaches but to uncertainty
quanti�cation methods in general, concerns the relevant modeling of uncertainties. In
the physical models, sources of uncertainty appear at various scales, involving di�erent
physical phenomena. Uncertainties are often well understood and modeled in certain
scales which do not correspond to the scales under study. Fully multi-scale computa-
tional methods, allowing to transfer the uncertainties through the scales, could lead to
the construction of more relevant models, to more reliable predictions, as well as to a
better understanding of the physical phenomena. Beyond these issues, these multiscale
strategies will allow to increase the e�ciency of the spectral stochastic approaches and
thus to solve problems which are currently una�ordable with available computational
resources. In this context, the development of model reduction techniques, which is
already a challenging issue in the deterministic context, seem to be unavoidable as an
additional probabilistic dimension has to be dealt with.

All these questions constitute some important scienti�c and technical challenges,
which could lead to a better control of models and numerical simulations in an uncertain
context. It thus remains to hope that future developments will allow to reach a full
maturity of these methods and allow their massive use for the resolution of problems
of interest.

A Representation and discretization of random processes or �elds

Here, we brie�y introduce some classical techniques for representing random processes (or
�elds). For an introduction to random processes, the reader can refer to [37,67,1,77,78] for a
mathematical point of view or to [98,52,53,126,30] for more technical aspects.
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A.1 De�nition and characterization of random processes

A random process with value in E is formally de�ned as a indexed set of random variables
{ux(θ))}x∈Ω , where the ux(θ) are random variables with values in E, de�ned on a probability
space (Θ, B, P ). Ω can be a �nite or countable set, in which case the stochastic process is
called a discrete stochastic process, or an uncountable set such as an interval Ω ⊂ R or even a
domain Ω ⊂ Rd. In the case where Ω is a spatial domain, the random process is rather called
a random �eld. A stochastic process can be equivalently seen as a measurable function

u : (x, θ) ∈ Ω × Θ 7→ u(x, θ) ∈ E,

or still as a random variable with values in a space of functions de�ned on Ω with values in E.
The equivalence between these di�erent interpretations require some technical considerations
[67,77,61]. In the following, one restricts the presentation to scalar random processes, i.e.
E = R.

The probabilistic characterization of a stochastic process then requires the probabilistic
characterization of a set of random variables, eventually uncountable. In fact, a random process
can be completely characterized by its �nite dimensional probability laws [1,67], which are the
joint probability laws of all �nite sets of random variables {ux1 , ..., uxn}, n ∈ N, xi ∈ Ω.

In the following, we consider the representation and discretization of second order processes
(for an introduction to generalized random processes, see [41,67,30,55]). Various discretiza-
tion techniques are available in the literature (see [115,117,83,125,60]). We here present two
techniques classically used in the context of spectral stochastic methods: the Karhunen-Loève
decomposition and the polynomial chaos decomposition.

A.2 Karhunen-Loève decomposition

Karhunen-Loève decomposition [76,58] applies to second order stochastic processes u ∈ L2(Ω)⊗
L2(Θ, dP ). It consists in decomposing the random process u under the form:

u(x, θ) = µu(x) +
∞∑

i=1

√
σiwi(x)ζi(θ) (115)

where µu is the mean value of u, where functions wi(x) form a particular Hilbertian basis
of L2(Ω), where the ζi ∈ L2(Θ, dP ) are centered uncorrelated random variables with unit
variance and where the σi are positive constants. Couples (wi, σi) ∈ L2(Ω)×R+ are solutions
of an eigenproblem12

∫

Ω

Cu(x, y)wi(y) dy = σiwi(x), (116)

where Cu is the covariance function of u, de�ned by:

Cu(x, y) = E
(
(u(x, θ) − µu(x))(u(y, θ) − µu(y))

)
. (117)

Couples (wi, σi) are then the eigenpairs of operator

Tu : w ∈ L2(Ω) 7→ Tu(v) =

∫

Ω

Cu(·, y)w(y)dy (118)

:=< Cu, w >L2(Ω) .

Tu is called the covariance operator and Cu the covariance kernel. Under regularity assumptions
on Cu (e.g. Cu ∈ C(Ω × Ω) with Ω compact, or Cu ∈ L2(Ω × Ω)), one shows that Tu is a
continuous self-adjoint positive semi-de�nite and compact operator from L2(Ω) to L2(Ω), so
that classical spectral theory applies [105]. Tu has a countable set of non-negative eigenvalues
with only possible accumulation point zero. The set of its eigenfunctions form a Hilbertian basis

12 Eigenproblem (116) is a homogeneous Fredholm integral equation of second type [32,105].
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of L2(Ω). Random process u can then be decomposed under the form (115), where random
variables ζi are de�ned by

ζi(θ) =
1

√
σi

< u − µu, wi >L2(Ω)

=
1

√
σi

∫

Ω

(u(x, θ) − µu(x))wi(x)dx.

The series (115) converges in L2(Ω) ⊗ L2(Θ, dP ):

‖u − µu −
m∑

i=1

√
σiwiζi‖2

L2(Ω)⊗L2(Θ,dP )

= ‖u − µu‖2
L2(Ω)⊗L2(Θ,dP )

−
m∑

i=1

σi −→
m→∞

0. (119)

In the case of a Gaussian random process, random variables ζi are uncorrelated and hence in-
dependent Gaussian random variables. The Karhunen-Loève decomposition is then very inter-
esting in this case since it allows representing the process in terms of a set of random variables
whose probability law is completely and easily characterized. In the case of a non-Gaussian
random process, this decomposition is still valid. However, the probabilistic characterization
of the set of random variables is more delicate.

Remark 18 - In very particular cases, eigenproblem (116) admits analytical solutions. In the
general case, the resolution asks for ad hoc numerical techniques [4].

The stochastic discretization of the process consists in truncating the Karhunen-Loève up to
an order m, keeping the m dominant eigenvalues:

u(x, θ) ≈ um(x, θ) = µu(x) +
m∑

i=1

√
σiwi(x)ζi(θ). (120)

It results the following optimality property: the truncated Karhunen-Loève decomposition
(120) is the optimal decomposition of the process with respect to the natural norm in L2(Ω)⊗
L2(Θ, dP ) over the set of decompositions of type µu(x) +

∑m
i=1 wi(x)νi(θ), with wi ∈ L2(Ω)

and ζi ∈ L2(Θ, dP ):

‖u − um‖2
L2(Ω)⊗L2(Θ,dP )

= min
wi∈L2(Ω)

νi∈L2(Θ,dP )

‖u − µu −
m∑

i=1

wiνi‖2
L2(Ω)⊗L2(Θ,dP )

.

Remark 19 - Let us note that generalizations of Karhunen-Loève expansion exists in the case
where the covariance operator Tu is not compact or not continuous [33,13].

A.3 Hilbert Karhunen-Loève decomposition

A natural extension of Karhunen-Loève decomposition, called Hilbert Karhunen-Loève [75,
38], consists in searching an optimal decomposition of the process u ∈ V⊗ L2(Θ, dP ), where
V is a Hilbert space of functions de�ned on Ω. The space V⊗ L2(Θ, dP ) is endowed with the
inner product

< ·, · >V⊗L2(Θ,dP )= E(< ·, · >V),

where < ·, · >V is an inner product on V. We introduce the linear operator Tu from V to V

de�ned by

Tu(w) =< Cu, w >V := E((u − µu) < (u − µu), w >V), (121)
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where Cu ∈ V⊗ V is the covariance function of random process u, de�ned by equation (117).
Under regularity assumptions on Cu, Tu is a continuous self-adjoint positive semi-de�nite and
compact operator from V to V and classical spectral theory applies. Eigenfunctions wi of Tu

form a Hilbertian basis of V (i.e. a complete set of functions which are orthonormal with
respect to inner product < ·, · >V). Denoting (wi, σi) the eigenpairs of Tu, one obtains the
following decomposition of the random process:

u(x, θ) = µu(x) +
∞∑

i=1

√
σiwi(x)ζi(θ) (122)

where the ζi ∈ L2(Θ, dP ) are centered uncorrelated random variables with unit variance. This
decomposition is convergent in V⊗ L2(Θ, dP ):

‖u − µu −
m∑

i=1

√
σiwiζi‖2

V⊗L2(Θ,dP )

= ‖u − µu‖2
V⊗L2(Θ,dP )

−
m∑

i=1

σi −→
m→∞

0. (123)

One can then obtain a discretized version of the random process by truncating the decompo-
sition:

u(x, θ) ≈ um(x, θ) = µu(x) +
m∑

i=1

√
σiwi(x)ζi(θ). (124)

This truncated decomposition veri�es the following optimality property: the truncated Hilbert
Karhunen-Loève expansion (124) is the optimal decomposition of the random process with
respect to the natural norm in V⊗ L2(Θ, dP ) over the set of decompositions of type µu(x) +∑m

i=1 wi(x)νi(θ), with wi ∈ V and νi ∈ L2(Θ, dP ):

‖u − um‖2
V⊗L2(Θ,dP )

= min
wi∈V

νi∈L2(Θ,dP )

‖u − µu −
m∑

i=1

wiνi‖2
V⊗L2(Θ,dP )

.

A.4 Polynomial chaos decomposition

Another type of representation of second order random processes consists in using a polyno-
mial chaos expansion. As suggested by Wiener [130], any random variables in L2(Θ, dP ) can
be represented as a series of polynomials in independent standard Gaussian random variables
[23,48,57].

Let us denote by ξ = {ξi}i∈N∗ a countable set of independent standard Gaussian random
variables. Orthogonal polynomials in ξ are the multidimensional Hermite polynomials. By
introducing the set of �nite length multi-indices

I = {α = (αi)i∈N∗ ∈ NN∗

; |α| =
∑

i∈N∗

αi < ∞},

Hermite polynomials can be written as:

Hα(ξ) =
∞∏

i=1

hαi (ξi),

where the hn(x) are unidimensional Hermite polynomials which are orthonormal polynomial
with respect to Gaussian measure ϕ(x)dx = 1√

2π
exp(−x2

2
)dx. The homogeneous chaos of

degree p is the space Hp de�ned by:

Hp = span{Hα; α ∈ I, |α| = p}.
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The polynomial chaos of degree p is then de�ned by

⊕p
k=0Hk.

We have the following orthogonal decomposition of the space of second order random variables:

L2(Θ, dP ) = ⊕∞
k=1Hk.

In other terms, the set of polynomials {Hα}α∈I form a Hilbertian basis of L2(Θ, dP ). A
stochastic process (or �eld) u(x, θ) can then be decomposed as follows:

u(x, θ) =
∑

α∈I

uα(x)Hα(ξ(θ)),

uα(x) =< u(x, ·), Hα(ξ(·)) >L2(Θ,dP )= E(u(x, θ)Hα(ξ(θ))).

This decomposition converges in L2(Θ, dP ) [26] (and eventually in other Lp spaces [57]). This
representation can be used as a complement to Karhunen-Loève expansions (115) or (122).
Indeed, it allows for a representation of random variables which appear in these expansions:
ζi(θ) =

∑
α∈I

ζi,αHα(ξ(θ)). An approximation of the random process is then obtained by
truncating the polynomial chaos to a �nite degree, with a �nite number of random variables.

B Generalized spectral decomposition for linear elliptic symmetric
problems

Here, we detail the concept of generalized spectral decomposition for the case of linear elliptic
symmetric problems, introduced in [89]. In this case, the method can be interpreted as a natural
extension of the Hilbert Karhunen-Loève decomposition. Let us note that the following results
apply to more general symmetric elliptic problems formulated in tensor product spaces (i.e.
not only to stochastic PDEs).
Let u ∈ V⊗ S denote the solution of problem

A(u, v) = B(v) ∀v ∈ V⊗ S, (125)

where A is a linear continuous coercive symmetric bilinear form on the Hilbert space V⊗ S

and where B is a linear continuous form on V⊗S. Bilinear form A de�nes a norm and an inner
product on Hilbert space V⊗ S, respectively de�ned by: ∀u, v ∈ V⊗ S,

‖u‖A = A(u, u), < u, v >A= A(u, v).

A natural extension of classical spectral decomposition consists in using the norm ‖ · ‖A in the
optimality condition (72), i.e. by de�ning an optimal decomposition uM =

∑M
i=1 wiλi, with

wi ∈ V and λi ∈ S, as follows:

‖u − uM‖2
A = min

{λi}M
i=1∈(S)M

{wi}M
i=1∈(V)M

‖u −
M∑

i=1

wiλi‖2
A. (126)

B.1 Generalized spectral decomposition

B.1.1 Optimal order 1 decomposition

Let us �rst consider the case where M = 1 and let us denote by (λ, w) ∈ S× V the optimal
couple verifying:

‖u − λw‖2
A = min

λ∈S

w∈V

‖u − λw‖2
A. (127)
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Stationarity conditions of optimization problem (127) with respect to w and λ respectively
write:

A(w∗λ, wλ) = B(w∗λ) ∀w∗ ∈ V, (128)
A(wλ∗, wλ) = B(wλ∗) ∀λ∗ ∈ S. (129)

Let us introduce the mapping F : S → V where w = F (λ) is the solution of equation (128)
for a given λ. Let us also introduce the mapping f : V → S where λ = f(w) is the solution
of equation (129) for a given w. The simultaneous veri�cation of (128) and (129) imposes the
following relations:

w = F (λ) and λ = f(w). (130)

Equations (130) can be interpreted as a problem on w:

T (w) = w, with T (w) = F ◦ f(w). (131)

If w solves problem (131), it satis�es

‖u − f(w)w‖2
A = ‖u‖2

A − σ(w), (132)

with

σ(w) = A(f(w)w, f(w)w) ≡ ‖f(w)w‖2
A. (133)

The optimal function w is then the �xed point of T that maximizes σ(w). In fact, operator
T : V → V is homogeneous of degree 1 and σ : V → R+ is homogeneous of degree 0, i.e.
∀α ∈ R\{0}, T (αw) = αT (w) and σ(αw) = σ(w). Problem (131) can then be interpreted
as a generalized eigenproblem with associated generalized Rayleigh quotient σ(w). The opti-
mal function w can then be interpreted as the dominant eigenfunction of T , associated with
generalized eigenvalue σ(w). This generalized eigenproblem (131) can be written in a more
conventional way by introducing a �rescaled� operator T̃ (w) = σ(w)T (w). Problem (131) is
then equivalent to:

T̃ (w) = σ(w)w. (134)

Remark 20 - Equations (130) can be equivalently interpreted as a problem on λ:

T ⋄(λ) = λ, with T ⋄(λ) = f ◦ F (λ), (135)

which can be rewritten as follows:

T̃ ⋄(λ) = σ⋄(λ)λ, (136)

where T̃ ⋄(λ) = σ⋄(λ)T ⋄(λ) and

σ⋄(λ) = A(λF (λ), λF (λ)) = ‖λF (λ)‖2
A. (137)

If λ solves (135), then

‖u − F (λ)λ‖2
A = ‖u‖2

A − σ⋄(λ),

and if we let w = F (λ) be the associated deterministic function, then λF (λ) = wf(w), w
solves eigenproblem (131) and σ⋄(λ) = σ(w).
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B.1.2 Optimal order M decomposition

Now, let us consider the case of an order M decomposition. We use the same notations as in
section 6.1, where Λ = (λi)

M
i=1 ∈ (S)M , W = (wi)

M
i=1 ∈ (V)M . The order M decomposition

is denoted by uM := W · Λ. The optimal decomposition of order M can be naturally de�ned
as the one which minimizes ‖u − uM‖A. Stationarity conditions with respect to deterministic
functions and stochastic functions respectively lead to equations (86) and (87). Following
section 6.1, we introduce the equivalent problem on W :

T (W ) = W, with T = F ◦ f. (138)

If W solves problem (138), it satis�es

‖u − W · f(W )‖2
A = ‖u‖2

A − σ(W ), (139)

with

σ(W ) = A(W · f(W ), W · f(W )) ≡ ‖W · f(W )‖2
A. (140)

σ(W ) can be interpreted as a Rayleigh quotient13. The optimal reduced basis W is such that it
maximizes σ(W ). The subspace spanned by an optimal W is called the dominant eigenspace.
In fact, we classically show that if W and W ∗ span the same subspace, then14 σ(W ) = σ(W ∗),
which means that σ can be equivalently interpreted as a real-valued function on M -dimensional
linear subspaces of V.
The generalized spectral decomposition uM = WΛ, with Λ = f(W ), is the optimal decom-
position of order M with respect to the norm ‖ · ‖A. Since problem (138) is not a classical
eigenproblem, functions wi and λi do not verify classical simultaneous orthogonality properties
(see below for classical spectral decompositions).

Remark 21 - Connection between generalized eigenfunctions and generalized eigenspaces.
Of course, for classical eigenproblems, the k dominant generalized eigenfunctions span the
k-dimensional dominant eigenspace. For the above eigen-like problem, this property is not
necessarily true. In particular, the dominant eigenfunction of T is not necessarily included in
the k-dimensional dominant eigenspace of T . That means that for obtaining the optimal order
M decomposition, one has to consider the research of the M-dimensional dominant general-
ized eigenspace and not the research of generalized eigenfunctions independently. However, in
practice, the above mentioned property is almost veri�ed (can be observed by computing angles
between generated linear subspaces).

B.1.3 Sub-optimal Order M decomposition

In the case where we de�ne the couples (wi, λi) of the decomposition one after the other, i.e.
if we de�ne (wi, λi) such that it minimizes ‖u−ui−1 −λiwi‖, we can write an eigen-like prob-
lem on a de�ated operator T (·; ui−1) (see section 6.2.2) and de�ne an associated generalized
Rayleigh quotient σ(w; ui−1). With this one-by-one construction, the optimal decomposition
veri�es

‖u − uM‖2
A = ‖u‖2

A −
M∑

i=1

σ(wi; ui−1),

which leads to an error greater than (139), obtained with the dominant eigenspace of the
initial operator. This fact, connected to remark 21, explains why in GSD algorithms, a global
update of random variables (or deterministic functions) with respect to the initial problem
(not de�ated) generally improves the obtained decomposition.

13 One can also introduce an associated generalized matrix Rayleigh quotient Σ(W ) [114],
de�ned by (Σ(W ))ij = A(W · f(W ), wifj(W )), and such σ(W ) = Trace(Σ(W )) (see [89,91]).
14 This equivalence between elements W spanning the same subspace is due the homogeneity
property of σ,i.e. σ(W ·P ) = σ(W ) for all invertible matrix P , where (W ·P )i :=

∑M
j=1 wjPji.
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B.2 Connection with classical spectral decompositions

In the case where inner product A(·, ·) results from a tensorization of inner products on V and
S, i.e. if we can write

A(λw, λw∗) =< w, w∗ >V< λ, λ >S , (141)

mappings F and f in equation (130) write as follows:

F (λ) =< λ, λ >−1
S

< u, λ >S , (142)
f(w) =< w, w >−1

V
< u, w >V . (143)

Operator T̃ and function σ(w) then write:

T̃ (w) =< u, < u, w >V>S , (144)
σ(w) =<< w, u >V , < u, w >V>S=< w, T̃ (w) >V . (145)

T̃ appears as a classical correlation operator associated with particular metrics on V and S.
In this case, problem (134) is then a classical eigenproblem. Eigenfunctions wi are orthogonal
with respect to inner product < ·, · >V and associated functions λi = f(wi) are orthogonal
with respect to inner product < ·, · >S . Retaining the M dominant eigenfunctions then leads
to a Hilbert Karhunen-Loève decomposition

uM =
M∑

i=1

wif(wi) ≡
M∑

i=1

√
σ(wi)

1

‖wiλi‖A

wiλi,

verifying

‖u − uM‖2
A = ‖u‖2

A −
M∑

i=1

σ(wi).

In this case, we can show that sub-optimal spectral decomposition de�ned in section B.1.3
coincides with the optimal spectral decomposition of order M .

Example 2 (Deterministic operator)
If A(u, v) = E(a(u, v)), where a is a deterministic continuous coercive symmetric bilinear
form on V, property (141) is then veri�ed with < w∗, w >V= a(w∗, w) and < λ∗, λ >S=
E(λλ∗), which is the classical inner product in L2(Ξ, dPξ). The generalized spectral decom-
position then exactly coincides with the classical Hilbert Karhunen-Loève decomposition of
u ∈ V⊗L2(Ξ, dPξ), where the inner product on V is based on the bilinear form a. This case is
encountered for stochastic elliptic symmetric PDE with deterministic operator and stochastic
right-hand side.

Example 3 (Operator with order 1 decomposition)
If A(u, v) = E(α(ξ)a(u, v)), where a is a deterministic continuous coercive symmetric bilinear
form on V and α(ξ) is a random variable such that 0 < α0 6 α(ξ) 6 α1 < ∞ almost surely,
property (141) follows with < w, w∗ >V= a(w, w∗) and < λ, λ∗ >S= E(αλλ∗). This case is
encountered for stochastic linear elliptic symmetric PDE where the operator is the product
of a random variable by a deterministic operator (i.e. when the operator admits an �order 1
spectral decomposition�).
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10. I. Babuška, R. Tempone, and G.E. Zouraris. Galerkin �nite element approximations of
stochastic elliptic di�erential equations. TICAM Report, 02-38, 2002.

11. M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An empirical interpolation
method: application to e�cient reduced-basis discretization of partial di�erential equa-
tions. Comptes Rendus Mathematique, 339(9):667�672, 2002.

12. F. E. Benth and J. Gjerde. Convergence rates for �nite element approximations of stochas-
tic partial di�erential equations. Stochastics and Stochastics Rep., 63(3-4):313�326, 1998.

13. A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer, Dordrecht, 2004.

14. M. Berveiller. Stochastic �nite elements: intrusive and non-intrusive methods for relia-
bility analysis. PhD thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.

15. M. Berveiller, B. Sudret, and M. Lemaire. Stochastic �nite element: a non intrusive
approach by regression. European Journal of Computational Mechanics, 15:81�92, 2006.

16. P. Besold. Solutions to Stochastic Partial Di�erential Equations as Elements of Tensor
Product Spaces. PhD thesis, Georg-August-Universität, Göttingen, 2000.

17. G. Blatman and B. Sudret. Sparse polynomial chaos expansions and adaptive stochastic
�nite elements using a regression approach. Comptes Rendus Mécanique, 336(6):518�523,
2007.

18. G. Blatman, B. Sudret, and M. Berveiller. Quasi random numbers in stochastic �nite
element analysis. Mécanique & Industries, 8:289�297, 2007.

19. H. Brézis. Analyse fonctionnelle : théorie et applications. Masson, Paris, 1983.
20. C. Le Bris, T. Lelievre, and Y. Maday. Results and questions on a nonlinear ap-

proximation approach for solving high-dimensional partial di�erential equations, e-print
arXiv:0811.0474v1, 2008.

21. H-J. Bungartz and M. Griebel. Sparse grids. Acta. Numer., 13:147�269, 2004.
22. R. E. Ca�isch. Monte carlo and quasi-monte carlo methods. Acta. Numer., 7:1�49, 1998.
23. R.H. Cameron and W.T. Martin. The orthogonal development of non-linear function-

als in series of fourier-hermite functionals. The Annals of Mathematics, Second Series,
48(2):385�392, 1947.

24. C. Canuto, M.Y. Hussaini, A. Quateroni, and T.A. Zang. Spectral methods in �uid
dynamics. Springer-Verlag, 1988.

25. C. Canuto and T. Kozubek. A �ctitious domain approach to the numerical solution of
pdes in stochastic domains. Numerische Mathematik, 107(2):257�293, 2007.

26. Y. Cao. On the rate of convergence of wiener-ito expansion for generalized random
variables. Stochastics, 78:179�187, 2006.

27. F. Chinesta, A. Ammar, F. Lemarchand, P. Beauchene, and F. Boust. Alleviating mesh
constraints: Model reduction, parallel time integration and high resolution homogeniza-
tion. Computer Methods in Applied Mechanics and Engineering, 197(5):400�413, 2008.

28. S. Choi, R.V. Grandhi, and R. A. Can�eld. Structural reliability under non-gaussian
stochastic behavior. Computers and Structures, 82:1113�1121, 2004.



55

29. S. Choi, R.V. Grandhi, R. A. Can�eld, and C.L. Pettit. Polynomial chaos expansion with
latin hypercube sampling for estimating response variability. AIAA Journal, 42(6):1191�
1198, 2004.

30. G. Christakos. Random Field Models in Earth Sciences. Academic Press, San Diego,
CA, 1992.

31. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Ams-
terdam, 1978.

32. R. Courant and D. Hilbert. Methods of Mathematical Physics. John Wiley & Sons,
Chichester, 1989.

33. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science
and Technology, Vol. 3, Spectral theory and applications. Springer-Verlag, Berlin, 1990.
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