Skip to main content

Advertisement

Log in

Perspectives for sustainable agriculture from the microbiome in plant rhizosphere

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The ever-growing human population globally has resulted in the quest for solutions to the problem of hunger by providing food security. The importance of plant-root-associated microorganisms cannot be overlooked, plants rely on them. These root colonizers dominate the rhizosphere due to the abundance of available nutrients, relying on their host plant for nutrients and other essential requirements. The relationships between microbial communities and plants are controlled by the type of plant and microorganism involved. Advances in modern molecular techniques have led to the evolution of omic technology using nucleic acid molecules to study plant-microorganism associations capable of stimulating plant growth, improve yield, and induce disease suppression. This review elucidates the activities of microbial communities, especially nitrogen-fixing rhizobacteria associated with plant roots, nitrogen fixation as a mechanism of promoting plant growth, their importance, and the challenges employing bioinoculants. Prospecting plant growth promoters using omic technology will advance sustainable agriculture globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adegboye MF, Babalola OO (2013) Phylogenetic characterization of culturable antibiotic producing Streptomyces from rhizospheric soils. Mol Biol 1:1–7

    Google Scholar 

  • Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11:1–11

    Google Scholar 

  • Ali MA, Naveed M, Mustafa A, Abbas A (2017) The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V., Kumar M., Sharma S., Prasad R. (eds) Probiotics and plant health. Springer, Singapore, pp 253–290

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LM (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264

    CAS  Google Scholar 

  • Ambrosini A, Sant’Annade FH, de Souza R, Tadra-Sfeir M, Faoro H, Alvarenga SM, Pedrosa FO, Souza EM, Passaglia LMP (2015) Genome sequence of Bacillus mycoides B38V, a growth-promoting bacterium of sunflower. Genome Announc 3:e0024500215

    Google Scholar 

  • Ambrosini A, Stefanski T, Lisboa B, Beneduzi A, Vargas L, Passaglia L (2016) Diazotrophic Bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser. Ann Appl Biol 168:93–110

    CAS  Google Scholar 

  • Ambrosini A, Sant’Anna FH, Heinzmann J, Fernandes GD, Bach E, Passaglia LMP (2018) Paenibacillus helianthi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Helianthus annuus L. Antonie Leeuwen 111:2463–2471

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    CAS  PubMed  Google Scholar 

  • Babalola OO, Nwachukwu BC, Ayangbenro AS (2021) High-throughput sequencing survey of sunflower soil. Microbiol Res Announc 10:1–3

    Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23:747–752

    Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1–17

    Google Scholar 

  • Bagyaraj D, Ashwin R (2017) Can mycorrhizal fungi influence plant diversity and production in an ecosystem. Microb Restora Degrad Ecosyst 13:1–17

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barquero M, Pastor-Buies R, Urbano B, González-Andrés F (2019) Challenges, regulations and future actions in biofertilizers in the european agriculture: From the lab to the field. In: Zúñiga-Dávila D, González-Andrés F, Ormeño-Orrillo E (eds) Microbial probiotics for agricultural systems. Springer, New York, pp 83–107

  • Bashan Y, de-BashanPrabhu LES (2016) Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Singh H, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore, pp 15–46

  • Beckers B, De Beeck MO, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:1–17

    Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Rev Phytopathol 55:61–83

    CAS  Google Scholar 

  • Brink C, Postma A, Jacobs K (2017) Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: a review. South African J Bot 110:80–86

    Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrell AA, Frank C (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front Microbiol 6:1–11

    Google Scholar 

  • Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, Shukla P (2020) Techniques for improving formulations of bioinoculants. Biotechol 10:1–9

    Google Scholar 

  • Chauhan H, Bagyaraj D, Selvakumar G, Sundaram S (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53

    Google Scholar 

  • Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B (2019b) Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7:1–13

    Google Scholar 

  • Chen L, Wang T, Zhao M, Zhang W (2019a) Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at the whole genome level. Model Legume Medicago Truncatula 27:777–784

    Google Scholar 

  • Crawford KM, Knight TM (2017) Competition overwhelms the positive plant–soil feedback generated by an invasive plant. Oecologia 183:211–220

    PubMed  Google Scholar 

  • Cregger M, Veach A, Yang Z, Crouch M, Vilgalys R, Tuskan G, Schadt C (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:1–14

    Google Scholar 

  • Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, Le Paslier D, Simonet P, Vogel TM (2015) Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 6:1–15

    Google Scholar 

  • Deng S, Wipf HML, Pierroz G, Raab TK, Khanna R, Coleman-Derr D (2019) A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Sci Rep 9:1–15

    Google Scholar 

  • Donovan PD, Gonzalez G, Higgins DG, Butler G, Ito K (2018) Identification of fungi in shotgun metagenomics datasets. PLoS One 13:1–16

    Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elmagzob AAH, Ibrahim MM, Zhang GF (2019) Seasonal Diversity of endophytic bacteria associated with Cinnamomum camphora (L.) Presl. Diversity 11:1–15

    Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fadiji AE, Babalola OO (2020) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Meth 170:1–13

    Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Chang Biol 21:2082–2094

    Google Scholar 

  • Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP (2016) The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol 7:1–16

    Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Garrido-Oter R, Nakano RT, Dombrowski N, Ma K, Team TA, McHardy AC, Schulze-Lefert P (2018) Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24:155–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gastal F, Lemaire G, Durand JL, Louarn G (2015) Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency crop physiology. Elsevier, USA, pp 161–206

    Google Scholar 

  • Gomes EA, Lana UG, Quensen JF, de Sousa SM, Oliveira CA, Guo J, Guimarães LJ, Tiedje JM (2018) Root-associated microbiome of maize genotypes with contrasting phosphorus use efficiency. Phytobiomes 2:129–137

    Google Scholar 

  • Grafton RQ, Daugbjerg C, Qureshi ME (2015) Towards food security by 2050. Food Security 7:179–183

    Google Scholar 

  • Hristeva TH, Denev ID (2017) Changes at the rhizosphere microbiota of the sunflower–Orobanche cumana Wallr pathosystem. Internat J Curr Microbiol Appl Sci 6:733–746

    CAS  Google Scholar 

  • Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Comm 9:1–13

    Google Scholar 

  • Igiehon NO, Babalola OO (2018a) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Internat J Environ Res Pub Health 15:1–25

    Google Scholar 

  • Igiehon NO, Babalola OO (2018b) Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol J 12:261–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igiehon NO, Babalola OO, Aremu BR (2019) Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol 19:1–22

    CAS  Google Scholar 

  • Igiehon NO, Babalola OO, Cheseto X, Torto B (2020) Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol Res 242:1–16

  • Itelima J, Bang W, Onyimba I, Oj E (2018) A review: biofertilizer; a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 2:22–28

    Google Scholar 

  • Jadhav RK, Anil L (2020) Attempt of Costus arbuscular mycorrhizal inoculants association with leguminous foliage whey on chlorophyll of sunflower (Helianthus annus L.) plants. J Plant Stress Physiol 6:18–23

    Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    CAS  PubMed  Google Scholar 

  • Jiang L, Song M, Yang L, Zhang D, Sun Y, Shen Z, Luo C, Zhang G (2016) Exploring the influence of environmental factors on bacterial communities within the rhizosphere of the Cu-tolerant plant Elsholtzia Splendens. Scient Rep 6:36302

    CAS  Google Scholar 

  • Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albaum SP, Schlüter A, Goesmann A (2017) Bioinformatics for next generation sequencing based metagenomics and the application to biogas research. J Biotechnol 261:10–23

    PubMed  Google Scholar 

  • Kang D, Yu T, Xu D, Zeng Z, Ding A, Zhang M, Shan S, Zhang W, Zheng P (2019) The anammox process at typical feast-famine states: Reactor performance, sludge activity and microbial community. Chem Eng J 370:110–119

    CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:1–19

    Google Scholar 

  • Kumari B, Mallick M, Solanki MK, Solanki AC, Hora A, Guo W (2019) Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Ansari R, Mahmood I (eds) Plant Health Under Biotic Stress. Springer, Singapore pp. 109–127

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    CAS  Google Scholar 

  • Lagos L, Maruyama F, Nannipieri P, Mora M, Ogram A, Jorquera M (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J Soil Sci Plant Nutri 15:504–523

    Google Scholar 

  • Lang M, Bei S, Li X, Kuyper TW, Zhang J (2019) Rhizoplane bacteria and plant species co-determine phosphorus-mediated microbial legacy effect. Front Microbiol 10:1–16

    Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Comm 6:1–8

    Google Scholar 

  • Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, Noguera DR (2017) Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Comm 8:1–12

    Google Scholar 

  • Lee SA, Kim Y, Kim JM, Chu B, Joa JH, Sang MK, Song J, Weon HY (2019) A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scient Rep 9:1–15

    Google Scholar 

  • Lemaire G, Gastal F (2016) Improved estimation of nitrogen uptake in grasslands using the nitrogen dilution curve. Agro Sust Dev 36:46–47

  • Lemaire G, de Faccio Carvalho PC, Kronberg S, Recous S (2018) Agroecosystem diversity: reconciling contemporary agriculture and environmental quality. In: Lemaire G, de Faccio PC, Scott K, Sylvie R (eds) Agroecosystem diversity. Elsevier Science, New York, p 478

  • Li H, Su JQ, Yang XR, Zhu YG (2019) Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Tot Environ 649:422–430

    CAS  Google Scholar 

  • Liu P, Wang XH, Li JG, Qin W, Xiao CZ, Zhao X, Jiang HX, Sui JK, Sa RB, Wang WY (2015) Pyrosequencing reveals fungal communities in the rhizosphere of Xinjiang jujube. Biol Med Res Inter 2015:1–8

    Google Scholar 

  • Lugtenberg B (2015) Life of microbes in the rhizosphere. Principles of plant-microbe interactions. Springer, Switzerland, pp 7–15

    Google Scholar 

  • Lyu M, Li X, Xie J, Homyak PM, Ukonmaanaho L, Yang Z, Liu X, Ruan C, Yang Y (2019) Root–microbial interaction accelerates soil nitrogen depletion but not soil carbon after increasing litter inputs to a coniferous forest. Plant Soil 444:153–164

    CAS  Google Scholar 

  • Macouzet M (2016) Critical aspects in the conception and production of microbial plant biostimulants. Probiotic Intelligentsia 5:29–38

    Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Naqqash T, Hanif MK (2015) Isolation and characterization of sunflower associated bacterial strain with broad spectrum plant growth promoting traits. Microbiol Res 13:110–123

    Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    PubMed  PubMed Central  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Yasmin S, Hanif MK, Naqqash T, Imran A (2018) Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol Res 216:56–69

    CAS  PubMed  Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37:1599–1609

    CAS  PubMed  Google Scholar 

  • Manivanh L, Pierret A, Rattanavong S, Kounnavongsa O, Buisson Y, Elliott I, Maeght JL, Xayyathip K, Silisouk J, Vongsouvath M (2017) Burkholderia pseudomallei in a lowland rice paddy: seasonal changes and influence of soil depth and physico-chemical properties. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Maropola MKA, Ramond JB, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Meth 112:104–117

    CAS  Google Scholar 

  • Martellacci L, Quaranta G, Patini R, Isola G, Gallenzi P, Masucci L (2019) A literature review of metagenomics and culturomics of the peri-implant microbiome: current evidence and future perspectives. Materials 12:3010

    CAS  PubMed Central  Google Scholar 

  • Miller RN (2018) Quantitative assessment of bacterial and fungal degradation of glucose and cellulose. The Research Repository- West Virginia University, Morgantown West Virginia, pp 1–42

  • Mora-Ruiz MDR, Alejandre-Colomo C, Ledger T, González B, Orfila A, Rosselló-Móra R (2018) Non-halophilic endophytes associated with the euhalophyte Arthrocnemum macrostachyum and their plant growth promoting activity potential. Federat Euro Microbiolog Microbiol Lett 365:1–11

    Google Scholar 

  • Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C (2017) Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Front Microbiol 7:1–14

    Google Scholar 

  • Mukhtar S, Mehnaz S, Mirza MS, Malik KA (2019) Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Brazil J Microbiol 50:85–97

    CAS  Google Scholar 

  • Muller EE, Faust K, Widder S, Herold M, Arbas SM, Wilmes P (2018) Using metabolic networks to resolve ecological properties of microbiomes. Curr Opin Syst Biol 8:73–80

    Google Scholar 

  • Murphy CJ, Baggs EM, Morley N, Wall DP, Paterson E (2015) Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter. Soil Biol Biochem 81:236–243

    CAS  Google Scholar 

  • Nwachukwu BC, Ayangbenro AS, Babalola OO (2021) Elucidating the rhizosphere associated bacteria for environmental sustainability. Agriculture 11:1–18

    Google Scholar 

  • Oak US, Kumar A, Vinay (2019) Perspectives of plant growth-promoting rhizobacteria in conferring salinity tolerance in crops. In: Singh D, Prabha R (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore, pp 299–313

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166

    CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    CAS  PubMed  Google Scholar 

  • Orlikowska T, Nowak K, Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Culture (PCTOC) 128:487–508

    CAS  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos L (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinfo Biol Insights 9:75–88

    Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart D, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1–12

    Google Scholar 

  • Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, López-Bucio J, Herrera-Estrella A (2017) Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Front Plant Sci 8:1–13

    Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:1–19

    Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fert Soils 51:403–415

    CAS  Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant Growth Promoting Rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. Plant growth promoting rhizobacteria amelioration in sustainable agriculture. Elsevier, UK, pp 129–157

    Google Scholar 

  • Preece C, Penuelas J (2016) Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409:1–17

    CAS  Google Scholar 

  • Purwati RDA, Herwati A (2016) Evaluation of quantitative and qualitative morphological characters of sunflower (Helianthus annuus) germplasm. Biodiversitas J Biol Diver 17:461–465

    Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68

    CAS  PubMed  Google Scholar 

  • Resende M, Jakoby I, dos Santos L, Soares M, Pereira F, Souchie E, Silva F (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). African J Microbiol Res 8:2616–2623

    CAS  Google Scholar 

  • Sabale SN, Suryawanshi PP, Krishnaraj P (2019) Soil metagenomics: concepts and applications, metagenomics-basics, methods and applications. In Wael NH (ed) Metagenomics basics, methods and application IntechOpen, London, pp 1–28

    Google Scholar 

  • Salas ME, Lozano MJ, López JL, Draghi WO, Serrania J, Torres Tejerizo GA, Albicoro FJ, Nilsson JF, Pistorio M, Del Papa MF (2017) Specificity traits consistent with legume-rhizobia coevolution displayed by Ensifer meliloti rhizosphere colonization. Environ Microbiol 19:3423–3438

    CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on non-target microorganisms. FEMS Microbiol Ecol 64:106–116

    CAS  PubMed  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Inter 28:212–217

    CAS  Google Scholar 

  • Schlemper TR, Leite MF, Lucheta AR, Shimels M, Bouwmeester HJ, van Veen JA, Kuramae EE (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. Federation of European Microbiology Societies. Microbiol Ecol 93:1–11

    Google Scholar 

  • Şeker MG, Şah I, Kırdök E, Ekinci H, Çiftçi YÖ, Akkaya Ö (2017) A hidden plant growth promoting bacterium isolated from in vitro cultures of fraser photinia (Photinia × fraseri). Inter J Agric Biol 19:1511–1519

    Google Scholar 

  • Sessitsch A, Mitter B (2015) 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 8:32–33

    PubMed  Google Scholar 

  • Singh SB, Gowtham H, Murali M, Hariprasad P, Lakshmeesha T, Murthy KN, Amruthesh K, Niranjana S (2019) Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocat Agricult Biotechnol 18:101089

    Google Scholar 

  • Singh J, Sharma M, Singh S, Bano R, Mahawar A (2018) Effect of organic and inorganic sources of NPK and bio-fertilizer on enhancement of growth attributes and Chlorophyll content of sweet potato. Inter J Curr Microbiol Appl Sci 7:3659–3667

    CAS  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    PubMed  PubMed Central  Google Scholar 

  • Srivastavia RS, Anshika (2017) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Inter J Agric Sci Res 7:505–510

    Google Scholar 

  • Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ, Firestone MK, Banfield JF (2018) Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6:1–12

    Google Scholar 

  • Susilowati DN, Sudiana I, Mubarik N, Agatis J, Campus D (2015) Species and functional diversity of rhizobacteria of rice plant in the coastal soils of Indonesia. Indonesian J Agric Sci 16:39–50

    CAS  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70:305–313

    CAS  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E, Peralta-Videa J, Gardea-Torresdey J, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58

    CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    PubMed  Google Scholar 

  • Vargas-Albores F, Martínez-Córdova LR, Martínez-Porchas M, Calderón K, Lago-Lestón A (2019) Functional metagenomics: a tool to gain knowledge for agronomic and veterinary sciences. Biotechnol Genet Eng Rev 35:69–91. https://doi.org/10.1080/02648725.2018.1513230

    Article  CAS  PubMed  Google Scholar 

  • Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P (2017) Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf 142:200–206

    CAS  PubMed  Google Scholar 

  • Xu Y, Ge Y, Song J, Rensing C (2019) Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol Fert Soils 56:1–12

    Google Scholar 

  • Yu X, Hu X, Peng Y, Wu Z, Zhang Q, Li Z, Shi C, Du K (2019) Amplicon sequencing reveals different microbial communities in living poplar wetwood and sapwood. Trees 33:851–865

    Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S (2015) The soil microbeme influences grapevine-associated microbiota. Am Soc Microbioloy MBio 6:e02527-e2514

    Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol 37:8–14

    PubMed  Google Scholar 

  • Zhou J, Jiang X, Zhou B, Zhao B, Ma M, Guan D, Li J, Chen S, Cao F, Shen D (2016) Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol Biochem 95:135–143

    CAS  Google Scholar 

  • Zhou Z, Ding G, Yu M, Gao G, Wang G (2020) Diversity and structural variability of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS One 1–47

Download references

Acknowledgements

B.C.N. appreciates the National Research Foundation South Africa/ The World Academy of Science (NRF-TWAS) for PhD stipend (UID121772). O.O.B., acknowledges the National Research Foundation, South Africa for grants (UID123634; 132595) that supported research in her laboratory.

Funding

National Research Foundation, South Africa, funded the work in our laboratory (UID123634; 132595).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed.

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwachukwu, B.C., Babalola, O.O. Perspectives for sustainable agriculture from the microbiome in plant rhizosphere. Plant Biotechnol Rep 15, 259–278 (2021). https://doi.org/10.1007/s11816-021-00676-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00676-3

Keywords

Navigation