Skip to main content
Log in

Therapeutic effect of chitosan modification on salmon-calcitonin-loaded PLGA nanoparticles

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Although salmon-calcitonin (sCT) has been known as a potent drug for the treatment of osteoporosis, its oral dosage form products have not been commercially available primarily due to a poor oral bioavailability. Chitosan has been extensively examined as a potential oral absorption enhancer, whereas encapsulation with PLGA has been widely studied to address the delivery problems of typical peptide drug molecules. We investigated the mechanism and therapeutic effect of chitosan modification on the sCT-loaded PLGA nanoparticles. Chitosan was added onto these particles in two ways: by incorporation during W/O/W emulsification and by solid dipping. Particles were characterized by particle size analyzer, Zeta potential analyzer, scanning electron microscopy, and so forth. Nano-sized particles of 430–590 nm in fairly spherical shape with a narrow size distribution were produced. The PLGA encapsulation efficiency greater than 50% of added sCT was achieved regardless of chitosan modification. It turned out that sCT-loaded PLGA particles with chitosan modified during W/O/W emulsification (referred to as sCT-PLGA-CHT1) showed better therapeutic behavior in terms of sustained release effects as well as short-period hypocalcemic effects than the others. It was concluded that the beneficial effect was greatly associated with the formation of embedded structure of chitosan molecules when particles were modified with chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hejazi and M. Amiji, J. Control. Release, 89, 151 (2003).

    Article  CAS  Google Scholar 

  2. M. M. Issa, M. Koping-Hoggard and P. Artursson, Drug Discovery Today: Technol., 2, 1 (2005).

    Article  CAS  Google Scholar 

  3. P. Sinswat and P. Tengamnuay, Int. J. Pharmaceutics, 257, 15 (2003).

    Article  CAS  Google Scholar 

  4. W. Sui, L. Huang, J. Wang and Q. Bo, Colloid. Surf. B: Biointerf., 65, 69 (2008).

    Article  CAS  Google Scholar 

  5. C.Y. Yu, B. C. Yin, W. Zhang, S. X. Cheng, X. Z. Zhang and R. X. Zhuo, Colloid. Surf. B: Biointerf., 68, 245 (2009).

    Article  CAS  Google Scholar 

  6. H. Yamamoto, Y. Kuno, S. Sugimoto, H. Takeuchi and Y. Kawashima, J. Control. Release, 102, 373 (2005).

    Article  CAS  Google Scholar 

  7. N. Nafee, S. Taetz, M. Schneider, U. F. Schaefer and C. M. Lehr, Nanomedicine, 3, 173 (2007).

    CAS  Google Scholar 

  8. K. Tahara, T. Sakai, H. Yamamoto, H. Takeuchi and Y. Kawashima, Int. J. Pharmaceutics, 354, 210 (2008).

    CAS  Google Scholar 

  9. R. Yang, S.G. Yang, W. S. Shim, F. Cui, G. Cheng, I.W. Kim, D. D. Kim, S. J. Chung and C. K. Shim, J. Pharm. Sci., 98, 970 (2009).

    Article  CAS  Google Scholar 

  10. R. Yang, W. S. Shim, F.D. Cui, G. Cheng, X. Han, Q. R. Jin, D. D. Kim, S. J. Chung and C. K. Shim, Int. J. Pharmaceutics, 371, 142 (2009).

    Article  CAS  Google Scholar 

  11. M. L. Manca, S. Mourtas, V. Dracopoulos, A. M. Fadda and S.G. Antimisiaris, Colloid. Surf. B: Biointerf., 62, 220 (2008).

    Article  CAS  Google Scholar 

  12. M. L. Manca, G. Loy, M. Zaru, A. M. Fadda and S.G. Antimisiaris, Colloid. Surf. B: Biointerf., 67, 166 (2008).

    Article  CAS  Google Scholar 

  13. M. Zaru, M. L. Manca, A. M. Fadda and S.G. Antimisiaris, Colloid. Surf. B: Biointerf., 71, 88 (2009).

    Article  CAS  Google Scholar 

  14. M. Garcia-Fuentes, C. Prego, D. Torres and M. J. Alonso, Euro. J. Pharm. Sci., 25, 133 (2005).

    Article  CAS  Google Scholar 

  15. J.-S. Lee, J.-S. Kim and H.-G. Lee, Colloid. Surf. B: Biointerf., 70, 213 (2009).

    Article  CAS  Google Scholar 

  16. G. Coppi and V. Iannuccelli, Int. J. Pharmaceutics, 367, 127 (2009).

    Article  CAS  Google Scholar 

  17. J.-Y. Jang, B.-S. Kwon, H.-E. Lee, J.-S. Kang, S.-K. Lee and G.-J. Choi, J. Ind. Eng. Chem., 13, 1043 (2007).

    CAS  Google Scholar 

  18. T.-S. Jung, B.-S. Kwon, H.-E. Lee, A.-Y. Kim, M.-J. Lee, C.-R. Park, H.-K. Kang, Y.-D Kim, S.-K. Lee and G.-J. Choi, Korean J. Chem. Eng., 26, 131 (2009).

    Article  CAS  Google Scholar 

  19. P. K. Smith, Anal. Biochem., 159, 76 (1985).

    Article  Google Scholar 

  20. L. A. Kaplan, A. J. Pesce and S. C. Kaczmierczak, Clinical Chemistry: Theory, Analysis, Correlation. 4th Ed., Mosby Inc., St. Louis (2003).

    Google Scholar 

  21. C. Prego, M. Garcia, D. Torres and M. J. Alonso, J. Control. Release, 101, 151 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MJ., Seo, DY., Lee, HE. et al. Therapeutic effect of chitosan modification on salmon-calcitonin-loaded PLGA nanoparticles. Korean J. Chem. Eng. 28, 1406–1411 (2011). https://doi.org/10.1007/s11814-010-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0508-9

Key words

Navigation