Skip to main content
Log in

Developing a new model to predict mass transfer coefficient of salicylic acid adsorption onto IRA-93: Experimental and modeling

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An experimental breakthrough curve for Salicylic acid in an adsorption recovery process was determined by an anion-exchange resin IRA-93. The volumetric mass transfer coefficients were calculated by employing constant wave propagation theory. Meanwhile, the effects of volumetric feed flow rates on this break through curve and mass transfer coefficients at different flow rates were also studied in order to develop three new models to predict mass transfer coefficient. The results demonstrated that by the increase in the feed flow rates, the amount of adsorption reduces. However, while the volumetric feed flow rates increase the overall volumetric mass transfer coefficients will increase. This grows the feeling that the feed flow rate should be optimized. The optimum flow rate for the adsorption was found to be 7 mg/l in this study. In addition, three new models to predict the mass transfer coefficient in respect of feed rates were developed in this research work which showed very high fittings with R2>0.99. These models could fully support the experimental data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Otero, M. Zabkova and A. E. Rodrigues, Sep. Purif. Technol., 45, 86 (2005).

    Article  CAS  Google Scholar 

  2. K. Kunin, Pure Appl. Chem., 46, 205 (1976).

    Article  CAS  Google Scholar 

  3. A. Morão, A. Lopes, M. T. Pessoa de Amorim and I. C. Gonçalves, Electrochim. Acta., 49, 1587 (2004).

    Google Scholar 

  4. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capala and I. Ostrowska, Sep. Purif. Technol., 40, 123 (2004).

    Article  CAS  Google Scholar 

  5. S.H. Lin, C. L. Pan and H.G. Leu, Chem. Eng. J., 87, 163 (2002).

    Article  CAS  Google Scholar 

  6. S. P. Deosarkar and V. G. Pangarkar, Sep. Purif. Technol., 38, 241 (2004).

    Article  CAS  Google Scholar 

  7. E.H. Crook, R. P. McDonell and J. T. McNulty, Ind. Eng. Chem. Prod. Res. Dev., 14, 113 (1975).

    Article  CAS  Google Scholar 

  8. D. S. Farrier, A. L. Hines and S. E. Wang, J. Colloid Interface Sci., 69, 233 (1979).

    Article  CAS  Google Scholar 

  9. G. M. Gusler, T. E. Browne and Y. Cohen, Ind. Eng. Chem. Res., 32, 2727 (1993).

    Article  CAS  Google Scholar 

  10. D. Hanesian and A. J. Perna, The sitting, process analysis and design of a manufacturing facility using hazardous material in a residential community (The manufacture of aspirin), Workbook, New Jersey Institute of Technology, Newark, New Jersey (1999).

    Google Scholar 

  11. C.G. Daughton and T.A. Ternes, Environ. Health Perspect., 107, 907 (1999).

    Article  CAS  Google Scholar 

  12. E. Erikson, K. Auffarth, A.-M. Eilersen, M. Henze and A. Ledin, Water SA., 29 (2003).

  13. X. T. Li, B. C. Pan and F.W. Meng, Ion. Exch. Adsorpt., 21, 209 (2005).

    CAS  Google Scholar 

  14. D. Chatzopoulos and A. Varma, Chem. Eng. Sci., 50, 127 (1995).

    Article  CAS  Google Scholar 

  15. A. Wolborska and P. Pustelnik, Water Res., 30, 2643 (1996).

    Article  CAS  Google Scholar 

  16. A. J. Slaney and R. Bhamidimarri, Water Sci. Technol., 38, 227 (1998).

    CAS  Google Scholar 

  17. A. Wolborska, Chem. Eng. J., 73, 85 (1999).

    Article  CAS  Google Scholar 

  18. J.M. Chern and Y.W. Chien, Water Res., 36, 647 (2002).

    Article  CAS  Google Scholar 

  19. B. C. Pan, Y. Xiong and A. M. Li, React. Funct. Polym., 53, 63 (2002).

    Article  CAS  Google Scholar 

  20. B. Salamatinia, A.H. Kamaruddin and A. Z. Abdullah, Chem. Eng. J., 145, 259 (2008).

    Article  CAS  Google Scholar 

  21. S. Takac, G. Calik, M. Aytar and T.H. Ozdamar, Biochem. Eng. J., 2, 101 (1998).

    Article  CAS  Google Scholar 

  22. J. J. Carberry, Chemical and catalytic reaction engineering, McGraw-Hill (1976).

  23. D. Chatzopoulos and A. Varma, Chem. Eng. Sci., 50, 127 (1995).

    Article  CAS  Google Scholar 

  24. A. Wolborska and P. Pustelnik, Water Res., 30, 2643 (1996).

    Article  CAS  Google Scholar 

  25. A. J. Slaney and R. Bhamidimarri, Water Sci. Technol., 38, 227 (1998).

    CAS  Google Scholar 

  26. A. Wolborska, Chem. Eng. J., 73, 85 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Kananpanah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kananpanah, S., Dizadji, N., Abolghasemi, H. et al. Developing a new model to predict mass transfer coefficient of salicylic acid adsorption onto IRA-93: Experimental and modeling. Korean J. Chem. Eng. 26, 1208–1212 (2009). https://doi.org/10.1007/s11814-009-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0215-6

Key words

Navigation