Skip to main content
Log in

Effects of organic acids modified ITO anodes on luminescent properties and stability of OLED devices

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, p-chlorophenylacetic acid and p-fluorophenylacetic acid were applied to modify the indium tin oxide (ITO) electrodes. The surface work functions of unmodified ITO, p-chlorophenylacetic acid modified ITO (Cl-ITO) and p-fluorophenylacetic acid modified ITO (F-ITO) are 5.0 eV, 5.26 eV and 5.14 eV, respectively, and the water contact angles are 7.3°, 59.1° and 46.5°, respectively. The increase of the work function makes the hole injection ability of the devices improved, which is proved by the hole transport devices. The self-assembly (SAM) layers transfer hydrophilic ITO to hydrophobic ITO, which makes ITO more compatible with the hydrophobic organic layers, making the organic film more stable during the operation. After modification, the organic light emitting diodes (OLEDs), SAM-modified ITO/NPB/Alq3/LiF/Al, with better performance and stability were fabricated. Especially, the OLED with Cl-ITO (Cl-OLED) has a maximum luminance of 22 428 cd/m2 (improved by 32.9%) and a half-lifetime of 46 h. Our results suggest that employing organic acids to modify ITO surface can enhance the stability and the luminescent properties of OLED devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Y. Dong, Z. Ming, J.J. Wang, W.U. Xiao-Lin and C.Y. Gao, Journal of Functional Materials 42, 306 (2011).

    ADS  Google Scholar 

  2. C. David, B.P. Tinkham, P. Prunici and A. Panckow, Surface & Coatings Technology 314, 113 (2017).

    Article  Google Scholar 

  3. O. Mermer and Y. Asci, Journal of Optoelectronics & Advanced Materials 17, 1339 (2015).

    Google Scholar 

  4. H. Zheng, F. Zhang, N. Zhou, M. Sun, X. Li, Y. Xiao and S. Wang, Organic Electronics 56, 89 (2018).

    Article  Google Scholar 

  5. Park, S.G. and T. Mori, ESC Journal of Solid State Science and Technology 6, R53 (2017).

    Article  Google Scholar 

  6. H.U. Juntao, J. Yang, F. Peng, W. Mei and Y. Niu, Semiconductor Optoelectronics 38, 16 (2017). (in Chinese)

    Google Scholar 

  7. A. Bulusu, S.A. Paniagua, B.A. Macleod, A.K. Sigdel, J.J. Berry, D.C. Olson, S.R. Marder and S. Graham, Langmuir the Acs Journal of Surfaces & Colloids 29, 3935 (2013).

    Article  Google Scholar 

  8. S. Besbes, A. Ltaief, K. Reybier, L. Ponsonnet, N. Jaffrezic, J. Davenas and H.B. Ouada, Synthetic Metals 138, 197 (2003).

    Article  Google Scholar 

  9. R.A. Hatton, S.R. Day, M.A. Chesters and M.R. Willis, Thin Solid Films 394, 291 (2001).

    Article  ADS  Google Scholar 

  10. X. Leihua, Z. Zhidan, T. Shuhua, J. Li and L. Jinlong, Journal of Dispersion Science and Technology 33, 1093 (2012).

    Article  Google Scholar 

  11. D. Jeong, C. Lim, M. Kim, K. Jeong, J.-H. Kim, J. Kim, J.-G. Park, K.-S. Min and J. Lee, Electronic Materials Letters 13, 16 (2017).

    Article  ADS  Google Scholar 

  12. J.A. Bardecker, H. Ma, T. Kim, F. Huang, M.S. Liu, Y.J. Cheng, G. Ting and K.Y. Jen, Advanced Functional Materials 18, 3964 (2008).

    Article  Google Scholar 

  13. M. Can, A.K. Havare, H. Aydin, N. Yagmurcukardes, S. Demic, S. Icli and S. Okur, Applied Surface Science 314, 1082 (2014).

    Article  ADS  Google Scholar 

  14. S.G. Mu, J.M. Song, C. Kim, J. Lee, J. Kim and J.L. Mi, Electronic Materials Letters 11, 252 (2015).

    Article  ADS  Google Scholar 

  15. Y. Zhao, L. Duan, D. Zhang, G. Dong, J. Qiao, L. Wang and Y. Qiu, Acs Applied Materials & Interfaces 6, 4570 (2014).

    Article  Google Scholar 

  16. J. Lee, B.J. Jung, J.I. Lee, H.Y. Chu, L.M. Do and H.K. Shim, Journal of Materials Chemistry 12, 3494 (2002).

    Article  Google Scholar 

  17. L.W. Chong, Y.L. Lee and T.C. Wen, Thin Solid Films 515, 2833 (2007).

    Article  ADS  Google Scholar 

  18. B.W. D’Andrade, J. Esler and J.J. Brown, Synthetic Metals 156, 405 (2006).

    Article  Google Scholar 

  19. L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nüesch, M.N. Bussac, D. Ades, A. Siove, E. Moons and M. Grätzel, The European Physical Journal B - Condensed Matter and Complex Systems 11, 505 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-tao Hu  (胡俊涛).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.51573036), the Fundamental Research Funds for the Central Universities of China (No.JD2016JGPY0007), the National High Technology Research and Development Program of China (No.2012AA011901), the National Program on Key Basic Research Project of China (No.2012CB723406), and the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China (No.CXY2013HFGD20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jt., Ye, Kl., Huang, Y. et al. Effects of organic acids modified ITO anodes on luminescent properties and stability of OLED devices. Optoelectron. Lett. 14, 262–266 (2018). https://doi.org/10.1007/s11801-018-8018-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-018-8018-9

Document code

Navigation