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Abstract. We construct a nonarchimedean (or p-adic) analogue of the classical
ternary Cantor set C. In particular, we show that this nonarchimedean Cantor
set C3 is self-similar. Furthermore, we characterize C3 as the subset of 3-adic
integers whose elements contain only 0’s and 2’s in their 3-adic expansions
and prove that C3 is naturally homeomorphic to C. Finally, from the point
of view of the theory of fractal strings and their complex fractal dimensions
[7, 8], the corresponding nonarchimedean Cantor string resembles the stan-
dard archimedean (or real) Cantor string perfectly.
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1. Introduction

Our goal in this article is to provide a good nonarchimedean (or p-adic) analogue
of the classical Cantor ternary set C and to show that it satisfies a counterpart of
some of the key properties of C in this nonarchimedean context. We also show that
the corresponding p-adic fractal string, called the nonarchimedean Cantor string
and denoted by CS3, is an exact analogue of the ordinary archimedean Cantor
string, a central example in the theory of real (or archimedean) fractal strings
and their complex dimensions [7, 8]. Furthermore, we compute the geometric zeta
function of CS3 and the associated complex fractal dimensions.

In a forthcoming paper [9], we will develop a general framework for formulat-
ing a theory of self-similar p-adic (or nonarchimedean) strings and their complex
fractal dimensions. Besides answering a natural mathematical question, these re-
sults may be useful in various aspects of mathematical physics, including p-adic
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quantum mechanics and string theory, where extensions from the archimedean to
the nonarchimedean setting have been extensively explored [12].

1.1. p-adic numbers

Let p ∈ N be a fixed prime number. For any nonzero x ∈ Q, we can always write
x = pv ·a/b with a, b ∈ Z and some unique v ∈ Z so that p does not divide ab. The
p-adic norm is a function | · |p : Q→ [0,∞) given by

|x|p = p−v and |0|p = 0.

One can verify that | · |p is indeed a norm on Q. Furthermore, it satisfies a strong
triangle inequality : for any x, y ∈ Q, we have |x + y|p ≤ max{|x|p, |y|p}; the
induced metric is therefore called an ultrametric. This inequality is called the
nonarchimedean property because for each x ∈ Q, |nx|p will never exceed |x|p
for any n ∈ N. The metric completion of Q with respect to the p-adic norm is
the field Qp of p-adic numbers. More concretely, there is a unique representation
of every z ∈ Qp: z = avp

v + · · · + a0 + a1p + a2p
2 + · · · for some v ∈ Z and

ai ∈ {0, 1, . . . , p − 1} for all i ≥ v. An important subspace of Qp is the unit ball,
Zp = {x ∈ Qp | |x|p ≤ 1}, which can also be represented as follows:

Zp = {a0 + a1p+ a2p
2 + · · · | ai ∈ {0, 1, . . . , p− 1}, ∀i ≥ 0}.

Using this p-adic expansion, we can see that

Zp =
p−1⋃
c=0

(c+ pZp), (1)

where c + pZp := {y ∈ Qp | |y − c|p ≤ 1/p}. Moreover, by the nonarchimedean
property of the p-adic norm, Zp is closed under addition and hence is a ring. It is
called the ring of p-adic integers, and Z is dense in Zp. Note that Zp is compact
and thus complete. (For general references on p-adic analysis, see, e.g., [4, 11].) It
is also known that there are topological models of Zp in the Euclidean space Rd as
fractal spaces such as the Cantor set and the Sierpiński gasket [11, §I.2.5]. In fact,
Zp is homeomorphic to the ternary Cantor set. It is thus natural to wonder what
exactly is the nonarchimedean (or p-adic) analogue of the ternary Cantor set. We
will answer this question in §2.

1.2. Ternary Cantor set

The classical ternary Cantor set, denoted by C, is the set that remains after itera-
tively removing the open middle third subinterval(s) from the closed unit interval
C0 = [0, 1]. The construction is illustrated in Figure 1. Hence, the ternary (or
archimedean) Cantor set C is equal to

⋂∞
n=0 Cn.

For comparison with our results in the nonarchimedean case, we state without
proof the following well-known results (see, e.g., [1, Ch. 9] and [2, p. 50]):

Theorem 1.1. The ternary Cantor set C is self-similar. More specifically, it is the
unique nonempty, compact invariant set in R generated by the family {Φ1,Φ2}
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Figure 1. Construction of the archimedean Cantor set C =
⋂∞

n=0 Cn.

of similarity contraction mappings of [0, 1] into itself, where Φ1(x) = x/3 and
Φ2(x) = x/3 + 2/3. That is,

C = Φ1(C) ∪ Φ2(C).

Theorem 1.2. The Cantor set is characterized by the ternary expansion of its
elements as

C =
{
c ∈ [0, 1]

∣∣∣∣ c = a0 +
a1

3
+
a2

32
+ · · · , ai ∈ {0, 2}, ∀i ≥ 0

}
.

We note that, as usual, we choose the nonrepeating ternary expansion here.
Such a precaution will not be needed in §2 for the elements of Q3 because the
3-adic expansion is unique.

1.3. Cantor fractal string

The archimedean (or real) Cantor string CS is defined as the complement of the
ternary Cantor set in the closed unit interval [0, 1]. By construction, the topological
boundary of CS is the ternary Cantor set C. The Cantor string is one of the simplest
and most important examples in the research monographs [7, 8] by Lapidus and
van Frankenhuijsen. Indeed, it is used throughout those books to illustrate and
motivate the general theory; see also, e.g., [5] and [6]. From the point of view
of the theory of fractal strings and their complex dimensions [7, 8], it suffices
to consider the sequence {ln}n∈N of lengths associated to CS. More specifically,
these are the lengths of the intervals of which the bounded open set CS ⊂ R
is composed. Accordingly, the Cantor string consists of 1 = m1 interval of length
l1 = 1/3, 2 = m2 intervals of length l2 = 1/9, 4 = m3 intervals of length l3 = 1/27,
and so on; see Figure 2.

Important information about the geometry of CS, e.g., the Minkowski dimen-
sion and the Minkowski measurability ([5–8]), is contained in its geometric zeta
function

ζCS(s) :=
∞∑

n=1

mn · lsn =
∞∑

n=1

2n−1

3ns
=

3−s

1− 2 · 3−s
for <(s) > D, (2)

where D = log 2/log 3 is the Minkowski dimension of the ternary Cantor set. In
addition, ζCS can be extended to a meromorphic function on the entire complex
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Figure 2. Cantor string (above); Cantor string viewed as a frac-
tal harp (below).

plane C, as given by the last expression in (2). The corresponding set of poles of
ζCS is then given by

DCS = {D + ıνp | ν ∈ Z}, (3)
where p = 2π/log 3 is the oscillatory period of CS. Here and henceforth, we let
ı :=

√
−1. The set DCS is called the set of complex dimensions of the Cantor

string; see Figure 5 in §3.
The general theme of the monographs [7, 8] is that the complex dimensions

describe oscillations in the geometry and the spectrum of a fractal string. In par-
ticular, there are oscillations of order D in the geometry of CS and therefore its
boundary, the Cantor set, is not Minkowski measurable; see [6], [8, §1.1.2].

In §3, we will obtain a nonarchimedean (or p-adic) analogue of the Cantor
string and establish its main properties.

2. Nonarchimedean Cantor set

Let Zp be the set of p-adic integers. The p-adic ball with center a ∈ Qp and radius
p−n, n ∈ Z, is the set

a+ pnZp = {x ∈ Qp | |x− a|p ≤ p−n}.
Two interesting “nonarchimedean phenomena” are that each point of the p-adic
ball is a center and a p-adic ball is both open and closed. Moreover, every interval1

in Qp can be canonically decomposed into p equally long subintervals, as in (1).
Consider the ring Z3 of 3-adic integers. In a procedure reminiscent of the

construction of the classical Cantor set, we construct the nonarchimedean Cantor
set. First, we subdivide T0 = Z3 into three equally long subintervals. We then
remove the “middle” third and call T1 the remaining set: T1 = 0 + 3Z3 ∪ 2 + 3Z3.
We then repeat this process with each of the remaining subintervals, i.e., 0 + 3Z3

1 We shall sometimes call the ball a + pnZp an “interval”.
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0 + 3Z3 1 + 3Z3 2 + 3Z3

0 + 9Z3 3 + 9Z3 6 + 9Z3 2 + 9Z3 5 + 9Z3 8 + 9Z3

Figure 3. Construction of the nonarchimedean Cantor set C3 =
⋂∞

n=0 Tn.

and 2+3Z3. Finally, we define the nonarchimedean Cantor set C3 to be
⋂∞

n=0 Tn; see
Figure 3. The nonarchimedean analogue of Theorem 1.1 is given by Theorem 2.1:

Theorem 2.1. The nonarchimedean Cantor set C3 is self-similar. More specifically,
it is the unique nonempty, compact invariant set in Qp generated by the family
{Ψ1,Ψ2} of similarity contraction mappings of Z3 into itself, where

Ψ1(x) = 3x and Ψ2(x) = 3x+ 2. (4)

That is,
C3 = Ψ1(C3) ∪Ψ2(C3).

Proof. From Figure 4, we can see that Ψ1(Tn) ∪ Ψ2(Tn) = Tn+1 for all n ≥ 0.
Since each Ψi is injective (i = 1, 2), we have Ψi(C3) = Ψi(

⋂
n Tn) =

⋂
n Ψi(Tn).

Therefore,

Ψ1(C3) ∪Ψ2(C3) =
∞⋂

n=0

(Ψ1(Tn) ∪Ψ2(Tn)) =
∞⋂

n=0

Tn+1 = C3.

The contraction mapping principle, applied to the complete metric space of all
nonempty compact subsets of Z3,

2 equipped with the Hausdorff metric induced
by the 3-adic norm, shows that there is a unique invariant set of the family of
similarity contraction mappings {Ψ1,Ψ2}. We refer to Hutchinson’s paper [3] for
a detailed argument in the case of arbitrary complete metric spaces.

Theorem 2.2. Let Wk = {1, 2}k be the set of all finite words, on two symbols, of a
given length k ≥ 0. Then

C3 =
∞⋂

k=0

⋃
w∈Wk

Ψw(Z3),

where Ψw := Ψwk
◦ · · · ◦Ψw1 for w = (w1, . . . , wk) ∈Wk and the maps Ψwi

are as
in equation (4).

2Recall from §1.1 that Z3 itself is a complete metric space.
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Z3

Ψ1(Z3) 1 + 3Z3 Ψ2(Z3)

Ψ11(Z3) 3 + 9Z3 Ψ21(Z3) Ψ12(Z3) 5 + 9Z3 Ψ22(Z3)

Figure 4. Construction of the nonarchimedean Cantor set via
an iterated function scheme (IFS).

Proof. For each k = 0, 1, 2, . . . , we have⋃
w∈Wk

Ψw(Z3) = Tk.

Hence, in light of Theorem 2.1, the result follows at once from the definition of C3;
see Figure 4.

The following result is the nonarchimedean analogue of Theorem 1.2:

Theorem 2.3. The nonarchimedean Cantor set is characterized by the 3-adic ex-
pansion of its elements. That is,

C3 =
{
κ ∈ Z3 | κ = a0 + a13 + a232 + · · · , ai ∈ {0, 2}, ∀i ≥ 0

}
.

Proof. First of all, observe that the inverses of Ψ1 and Ψ2 are, respectively,

Ψ−1
1 (x) =

x

3
and Ψ−1

2 (x) =
x− 2

3
.

Secondly, it is clear that for a′i ∈ {0, 1, 2} and i = 0, 1, . . . ,

a′0 + a′13 + a′232 + · · · ∈ 1 + 3Z3 ⇔ a′0 = 1. (5)

Now, let κ = a0 + a13 + a232 + · · · ∈ Z3 and suppose that some coefficients in its
3-adic expansion are 1’s. We will show that κ must then be in the image of 1+3Z3

under some composition of the maps Ψ1 and Ψ2. Let l ∈ N be the first index such
that al = 1. Hence, aj = 0 or 2 for all j < l. If a0 = 0, then we apply Ψ−1

1 to κ,
and if a0 = 2, then we apply Ψ−1

2 to κ. In both cases, we have

Ψ−1
i (κ) = a1 + a23 + · · ·+ al3l−1 + al+13l + · · · . (6)

Depending on whether a1 = 0 or 2, we apply Ψ−1
1 or Ψ−1

2 , respectively, to the
above 3-adic expansion (6). Proceeding in this manner, we will get

Ψ−1
w (κ) = al + al+13 + · · · ,
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which is in 1 + 3Z3 for some k ∈ N and w ∈ Wk. Thus κ ∈ Ψw(1 + 3Z3). Since
(1 + 3Z3) ∩ C3 = ∅ and Ψw is injective, we deduce that κ /∈ C3. Therefore, all of
the digits of κ ∈ C3 must lie in {0, 2}.

Conversely, suppose that all of the coefficients in κ = a0 + a13 + a232 + · · · ∈
Z3 are 0’s or 2’s. Then, by the above observation (5), κ /∈ 1 + 3Z3. Moreover,
κ /∈ Φw(1 + 3Z3) for any w ∈ Wk, k = 0, 1, 2, . . . , since none of the coefficients ai

is equal to 1. That is,

κ /∈
∞⋃

k=0

⋃
w∈Wk

Φw(1 + 3Z3) =: B.

But C3 ∩B = ∅ and C3 ∪B = Z3, as can be seen from equation (8) and Theorem
3.3. Hence, κ ∈ C3, as desired.

Theorem 2.4. The ternary Cantor set C and the nonarchimedean Cantor set C3
are homeomorphic.

Proof. Let φ : C → C3 be the map sending
∞∑

i=0

ai3−i 7→
∞∑

i=0

ai3i, (7)

where ai ∈ {0, 2} for all i ≥ 0. We note that on the left-hand side of (7), we
use the ternary expansion in R, whereas on the right-hand side we use the 3-adic
expansion in Q3. Then, clearly, φ is a continuous bijective map from C to C3. Since
both C and C3 are compact spaces in their respective natural metric topologies, φ
is a homeomorphism.

Remark 2.5. In view of Theorem 2.4, like its archimedean counterpart C, the
nonarchimedean Cantor set C3 is totally disconnected, uncountably infinite and
has no isolated points.

3. Nonarchimedean Cantor string

The nonarchimedean (or p-adic) Cantor string is defined to be

CS3 := (1 + 3Z3) ∪ (3 + 9Z3) ∪ (5 + 9Z3) ∪ · · · = Z3 \ C3, (8)

the complement of C3 in Z3; see the “middle” parts of Figure 3. Therefore, by anal-
ogy with the relationship between the archimedean Cantor set and Cantor string,
the nonarchimedean Cantor set C3 can be thought of as some kind of “boundary”
of the nonarchimedean Cantor string. Certainly, C3 is not the topological boundary
of CS3 because the latter boundary is empty.

Since Qp is a locally compact group, there is a unique translation invariant
Haar measure µH , normalized so that µH(Zp) = 1, and hence µH(a+3nZ3) = 3−n;
see [4], [11]. As in the real case in §1.3, we may identify CS3 with the sequence of
lengths ln = 3−n with multiplicities mn = 2n−1 for n ∈ N.

The following theorem provides the exact analogue of equations (2) and (3):
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Figure 5. The set of complex dimensions, DCS = DCS3 , of the
archimedean and nonarchimedean Cantor strings, CS and CS3.

Theorem 3.1. The geometric zeta function of the nonarchimedean Cantor string
is meromorphic in all of C and is given by

ζCS3(s) =
3−s

1− 2 · 3−s
. (9)

Hence, the set of complex dimensions of CS3 is given by

DCS3 = {D + ıνp | ν ∈ Z}, (10)

where D = log 2/log 3 is the dimension of CS3 and p = 2π/log 3 is its oscillatory
period.

Proof. By definition (see [9, 10]), the geometric zeta function of CS3 is given by

ζCS3(s) := (µH(1 + 3Z3))s + (µH(3 + 9Z))s + (µH(5 + 9Z3))s + · · ·

=
∞∑

n=1

2n−1

3ns
=

3−s

1− 2 · 3−s
for <(s) > log 2/log 3.

Furthermore, the meromorphic extension of ζCS3 to all of C is given by the last
expression in the above equation. The complex dimensions of CS3, defined as the
poles of ζCS3 , are all the solutions ω of the equation 1 − 2 · 3−ω = 0. These are
precisely of the form

ω =
log 2
log 3

+ ıν
2π

log 3
, ν ∈ Z.

Remark 3.2. In [9, 10], we prove that D is the Minkowski dimension of CS3 ⊂ Z3.
Clearly, D is also the abscissa of convergence of the Dirichlet series defining ζCS3 .
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The following result was used in the second part of the proof of Theorem 2.3:

Theorem 3.3. With the same notation as in Theorem 2.2, we have

CS3 =
∞⋃

k=0

⋃
w∈Wk

Ψw(1 + 3Z3).

Proof. For each k = 0, 1, 2, . . . , we let T̃k+1 = Z3\Tk+1, the complement of Tk+1

in Z3. Then
T̃k+1 =

⋃
w∈Wk

Ψw(1 + 3Z3).

Hence, in light of Theorem 2.1,
∞⋃

k=0

⋃
w∈Wk

Ψw(1 + 3Z3) =
∞⋃

k=0

T̃k+1 =
(⋂

Tk+1

)∼
= C̃3 = CS3,

by the definitions of C3 and CS3. See Figure 6.

...
...

...
...

Z3

0 + Z3 1 + 3Z3 = G 2 + Z3

0 + 9Z3 Ψ1(G) 6 + 9Z3 2 + 9Z3 Ψ2(G) 8 + 9Z3

Figure 6. Construction of the nonarchimedean Cantor string via
an IFS.

Remark 3.4. The above theorem shows that G = 1 + 3Z3 is the generator of the
nonarchimedean Cantor string. This is a particular case of a more general construc-
tion of self-similar p-adic fractal strings [9, 10]. Moreover, CS3 is not Minkowski
measurable as a subset of Q3. In fact, in contrast to the archimedean case ([8,
Theorems 8.23 and 8.36]), self-similar p-adic fractal strings are never Minkowski
measurable.
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[9] M. L. Lapidus and H. Lũ’, Self-similar p-adic fractal strings and their complex di-
mensions. In preparation.
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