Skip to main content
Log in

Exposure-response of Cr(III)-organic complexes to Saccharomyces cerevisiae

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Hexavalent chromium [Cr(VI)] bioreduction produces soluble Cr(III)-organic complexes. The Cr(III)-organic complexes are relatively stable once they are formed, and no data about their toxicity were reported. Therefore, this study aims to investigate the bioavailability and toxicity of the soluble Cr(III)-organic complexes. Saccharomyces cerevisiae L-1 wild type yeast strain was chosen as the model organism and Cr(III)-citrate was selected as the representative compound of the Cr(III)-organic complexes. The short-term chronic aquatic toxicity tests of the Cr(III)-citrate was explored by measuring growth inhibition, direct viable cell count, dry biomass, biosorption, and the amount of CO2 production. Cr(III)-citrate exerted a toxicity of 51 mg/L with an EC 50, which was calculated from the percent growth inhibition. These toxicity data would be helpful to define the toxic potential of the organo-chromium-III compounds in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnhart J. Chromium chemistry and implications for environmental fate and toxicity. J Soil Contam, 1997, 6: 561–568

    CAS  Google Scholar 

  2. Losi M E, Amrhein C, Frankenberger W T Jr. Environmental biochemistry of chromium. Rev Environ Contam Toxicol, 1994, 136: 91–121

    CAS  Google Scholar 

  3. Dragun J. Element fixation in soil. Soil Chem Hazard Mater, 1988, 75–152

  4. Arslan, P, Beltrame M, Tomasi A. Intracellular chromium reduction. Biochim Biophys Acta, 1987, 931: 10–15

    Article  CAS  Google Scholar 

  5. Norseth T. The carcinogenicity of chromium and its salts. Brit J Ind Med, 1986, 43: 649–651

    CAS  Google Scholar 

  6. Dayan A D, Paine A J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human Exp Toxicol, 2001, 20: 439–451

    Article  CAS  Google Scholar 

  7. Shen H, Wang Y. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol, 1993, 59: 3771–3777

    CAS  Google Scholar 

  8. Tebo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett, 1998, 162: 193–198

    Article  CAS  Google Scholar 

  9. Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M. Enzymatic reduction of chromate: Comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol, 2001, 5: 95–100

    Article  Google Scholar 

  10. Garbisu C, Alkorta I, Llama M J, Serra J L. Aerobic chromate reduction by Bacillus subtilis Biodegradation, 1998, 9: 133–141

    CAS  Google Scholar 

  11. Park C H, Keyhan M, Wielinga B, Fendorf S, Matin A. Purification to homogeneity and characterization of novel Pseudomonas putida chromate reductase. Appl Environ Microbiol, 2000, 66: 1788–1795

    Article  CAS  Google Scholar 

  12. Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol, 1992, 174: 5340–5345

    CAS  Google Scholar 

  13. Lovley D R, Phillips E J P. Reduction of chromate by Desulfovibrio vulgaris and Its c3 Cytochrome. Appl Environ Microbiol, 1994, 60: 726–728

    CAS  Google Scholar 

  14. Puzon G J, Roberts A G, Kramer D M, Xun L A. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol, 2005, 39: 2811–2817

    Article  CAS  Google Scholar 

  15. Puzon G J, Petersen J N, Roberts A G, Kramer D M, Xun L A. Bacterial flavin reductase systems reduces chromate to a soluble chromium-(III)-NAD + complex. Biochem Biophys Res Commun, 2002, 294: 76–81

    Article  CAS  Google Scholar 

  16. Puzon G J, Ranjeet K, Tokala H Z, Yonge D, Peyton B M, Xun L A. Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 2008, 70(11): 2054–2059

    Article  CAS  Google Scholar 

  17. http://en.wikipedia.org/wiki/Citrates#cite_ref-0

  18. Beattie J K, Haight G P J. Progress in Inorganic Chemistry. In: Edwards J O, ed. Chromium (VI) Oxidations of Inorganic Substrates. New York: Interscience, 1972, 93–146

    Google Scholar 

  19. Cabral M G, Viegas C A, Teixeira M C, Correia L S. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: Role of pH and of growth phase and size of the yeast cell population. Chemosphere, 2003, 51: 47–54

    Article  CAS  Google Scholar 

  20. Bitton G. Wastewater microbiology. In: Mitchell R, ed. Toxicity Testing in Wastewater Treatment Plants Using Microorganisms. Wiley Series in Ecological and Applied Microbiology. New York: John Wiley & Sons, 1999, 413–426

    Google Scholar 

  21. Koch H P, Hofeneder M, Bohne B. The yeast test: An alternative method for the testing of acute toxicity of drug substances and environmental chemicals. Meth Find Exp Clin Pharmacol, 1993, 15: 141–152

    CAS  Google Scholar 

  22. Iwahashi H, Fujita K, Takahashi Y. Bioassay for chemical toxicity using yeast Saccharomyces cerevisiae. Water Sci Technol, 2000, 42: 269–276

    CAS  Google Scholar 

  23. Ribeiro I C, Ver_ıssimo I, Moniz L, Cardoso H, Sousa MJ, Soares A M V M, Leao C. Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofluanid. Chemosphere, 2000, 41: 1637–1642

    Article  CAS  Google Scholar 

  24. Avery S V. Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol, 2001, 49: 111–142

    Article  CAS  Google Scholar 

  25. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman J C, Moreno-Sanchez R. Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev, 2001, 25: 335–347

    Article  CAS  Google Scholar 

  26. Sumner E R, Shanmuganathan A, Theodora C, Sideri, Sylvia A, Willetts J E, Avery S V. Oxidative protein damage causes chromium toxicity in yeast. Microbiology, 2005, 151: 1939–1948

    Article  CAS  Google Scholar 

  27. Walsh A R, O’Halloran J. Chromium Speciation in the tannery Effluent-I. An assessment of techniques and the role of organic Cr-(III) complexes. Water Res, 1996, 30: 2393–2400

    Article  CAS  Google Scholar 

  28. Blackwell K J, Tobin J M, Avery S V. Manganese toxicity towards Schharomyces cerevicie: dependence on intracellular and extracellular magnesium conc. Appl Microbiol Biotechnol, 1998, 49: 751–757

    Article  CAS  Google Scholar 

  29. Schmitt M, Gellert G, Ludwig J, Lichtenberg-Frate H. Phenotypic yeast growth analysis for chronic toxicity testing. Ecotoxicol Environ Safety, 2004, 59: 142–150

    Article  CAS  Google Scholar 

  30. Boeira L S, Bryce J H, Stewart G G, Flannigan B. The effect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenone and fumonisin B1) on growth of brewing yeasts. J Appl Microbiol, 2000, 88: 388–403

    Article  CAS  Google Scholar 

  31. Hrenovic J, Stilinovic B, Dvoracek L. Use of prokaryotic and eukaryotic biotests to assess toxicity of wastewater from pharmaceutical sources. Acta Chim Slov, 2005, 52: 119–125

    CAS  Google Scholar 

  32. Gomes D S, Riger C J, Pinto M L C, Panek A D, Eleutherio E C A. Evaluation of the role of Ace1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environ Toxicol Pharmacol. 2005, 20(3): 383–389

    Article  CAS  Google Scholar 

  33. Pill K G, Kupillas G E, Picardal F W, Arnold R G. Estimating the toxicity of chlorinated organic compounds using a multiparameter bacterial bioassay. Environ Toxicol Water Qual, 1991, 6: 271–291

    Article  CAS  Google Scholar 

  34. Lichtenberg-Fraté H, Schmitt M, Gellertb G, Ludwig J. A yeast-based method for the detection of cyto and genotoxicity. Toxicol in Vitro, 2003, 17: 709–716

    Article  Google Scholar 

  35. O’Brien T J, GuoHui Jiang G H, Gina Chun G, Mandel H G, Craig S. Westphal C S, Kahen K, Montaser A, States J C, Patierno S R. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease. Mutat Res-GenTox En, 2006, 610(1–2): 85–92

    Article  Google Scholar 

  36. O’Brien T J, Jamie L, Fornsaglio S C and Steven R P. Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S.cerevisiae. DNA Repair, 2002, 1: 617–627

    Article  Google Scholar 

  37. Bagchi D, Sidney J S, Bernard W D, Bagchi M and Harry G P. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 2002, 180: 5–22

    Article  CAS  Google Scholar 

  38. Raspor P, Batic M, Jamnik P, Josic D, Milacic R, Pas M, Recek M, Rezic-Dereani V, Skrt M. The influence of chromium compounds on yeast physiology (a review). Acta Microbiol Immunol Hung, 2000, 47: 143–173

    Article  CAS  Google Scholar 

  39. Srivastava S, Prakash S, Srivastava MM. Studies on mobilization of chromium with reference to its plant availability—role of organic acids. Bio Metals, 1999, 12, 201–207

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zejiao Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N., Luo, Z. Exposure-response of Cr(III)-organic complexes to Saccharomyces cerevisiae . Front. Environ. Sci. Eng. China 4, 196–202 (2010). https://doi.org/10.1007/s11783-010-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0008-5

Keywords

Navigation