Skip to main content
Log in

Synthesis of size-controllable Fe3O4 magnetic submicroparticles and its biocompatible evaluation in vitro

  • Materials, Metallurgy, Chemical and Environmental Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Large scaled uniform and size-controllable magnetic submicroparticles (MSPs) were synthesized via solvothermal method with ferric chloride as iron source and sodium acetate as trapping agent. The influence of Fe3+ and NaAc contents on the size distribution of MSPs was investigated. The structural and morphological properties of the synthesized particles were studied by scanning electron microscopy (SEM), X-ray power diffraction (XRD) and vibrating sample magnetometer (VSM). The well-dispersed MSPs with size of 100-1000 nm were obtained by simply adjusting the contents of Fe3+ and NaAc. In addition, the hemolysis and cytotoxicity of Fe3O4 MSPs, and their ability to case arrest in cell life-cycles were studied. The results indicate that larger size could lead to lower hemolysis. From MTT(3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the interactions between MSPs and adhesive mouse fibroblast cell line(L929) were probed. Larger size of Fe3O4 MSPs demonstrates lower cell viability following an exposure to the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HÄFELI U, SCHÜTT W, TELLER J, ZBOROWSKI M. Scientific and clinical applications of magnetic drug carriers [M]. Springer Science & Business Media, 1997.

    Book  Google Scholar 

  2. LIAN Suo-yuan, WANG En-bo, KANG Zhen-hui, BAI Yun-peng, GAO Lei, JIANG Min, HU Chang-wen, XU Lin. Synthesis of magnetite nanorods and porous hematite nanorods [J]. Solid State Commun, 2004, 129: 485–490.

    Article  Google Scholar 

  3. ZAITSEV V S, FILIMONOV D S, PRESNYAKOV I A, GAMBINO R J, CHU B. Physical and chemical properties of magnetite and magnetitepolymer nanoparticles and their colloidal dispersions [J]. Journal of Colloid and Interface Science, 1999, 212: 49–57.

    Article  Google Scholar 

  4. RAO C N R, KULKARNI G U, THOMAS P J, EDWARDS P P. Metal nanoparticles and their assemblies [J]. Chemical Society Reviews, 2000, 29(1): 27–35.

    Article  Google Scholar 

  5. WU K T, KUO P C, YAO Y D. Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique [J]. IEEE Transactions on Magnetics, 2001, 37(4): 2651–2653.

    Article  Google Scholar 

  6. XU Jing, YANG Hai-bin, FU Wu-you, DU Kai, SUI Yong-ming, CHEN Jiu-ju, ZENG Yi, LI Ming-hui, ZOU Guang-tian. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method [J]. Journal of Magnetism and Magnetic Materials, 2007, 309(2): 307–311.

    Article  Google Scholar 

  7. GAO Guan-hua, LIU Xiao-he, SHI Rong-rong, ZHOU Ke-chao, SHI You-guo, MA Ren-zhi. Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes [J]. Crystal Growth & Design, 2010, 10(7): 2888–2894.

    Article  Google Scholar 

  8. HYEON T, LEE S S, PARK J, CHUNG Y, NA H B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. Journal of the American Chemical Society, 2001, 123(51): 12798–12801.

    Article  Google Scholar 

  9. CARUSO F, CARUSO R A, MÖHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282(5391): 1111–1114.

    Article  Google Scholar 

  10. CARUSO F, SPASOVA M, SALGUEIRIÑO-MACEIRA V, LIZMARZÁN L M. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates [J]. Advanced Materials, 2001, 13(14): 1090–1094.

    Article  Google Scholar 

  11. NEL A, XIA T, MÄDLER L. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622–627.

    Article  Google Scholar 

  12. SERVICE R F. Nanotechnology grows up [J]. Science, 2004, 304(5678): 1732–1734.

    Article  Google Scholar 

  13. OBERDÖRSTER G, OBERDÖRSTER E, OBERDÖRSTER J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives, 2005, 113(7): 823–839.

    Article  MATH  Google Scholar 

  14. POLAND C A, DUFFIN R, KINLOCH I, MAYNARD A, WALLACE W A, SEATON A, STONE V, BROWN S, MACNEE W, DONALDSON K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study [J]. Nature Nanotechnology, 2008, 3(7): 423–428.

    Article  Google Scholar 

  15. TAKAGI A, HIROSE A, NISHIMURA T, FUKUMORI N, OGATA A, OHASHI N, KITAJIMA S, KANNO J. Induction of mesothelioma in p53+/-mouse by intraperitoneal application of multi-wall carbon nanotube [J]. The Journal of Toxicological Sciences, 2008, 33(1): 105–116.

    Article  Google Scholar 

  16. YANG J, PARK S B, YOON H G, HUH Y M, HAAM S. Preparation of poly caprolactone nanoparticles containing magnetite for magnetic drug carrier [J]. International Journal of Pharmaceutics, 2006, 324(2): 185–190.

    Article  Google Scholar 

  17. PANKHURST Q A, CONNOLLY J, JONES S K, DOBSON J. Applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D: Applied Physics, 2003, 36(13): R167.

    Article  Google Scholar 

  18. MÜLLER R H, MAAEN S, WEYHERS H, SPECHTB F, LUCKSB J S. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles [J]. International Journal of Pharmaceutics, 1996, 138(1): 85–94.

    Article  Google Scholar 

  19. NEL A, XIA T, MÄDLER L, LI N. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622–627.

    Article  Google Scholar 

  20. WARHEIT D B, WEBB T R, SAYES C M, COLVIN V L, REED L K. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area [J]. Toxicological Sciences, 2006, 91(1): 227–236.

    Article  Google Scholar 

  21. DENG Hong, LI Xiao-lin, PENG Qing, WANG Xun, CHEN Jin-ping, LI Ya-dong. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie, 2005, 117(18): 2842–2845.

    Article  Google Scholar 

  22. TING Fan, PAN Deng-ke, ZHANG Hui. Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes [J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9009–9018.

    Article  Google Scholar 

  23. SUN J, GU G, QIAN Y. Influence of different contact ways and extracting conditions on the hemolytic effect of biomaterials [J]. Journal of Biomedical Engineering, 2003, 20(1): 8–10. (in Chinese)

    Google Scholar 

  24. ZHANG Wen-yun, SHEN Yi, LI Nan. Evaluation of biocompatibility of fiber-reinforced dental composites [J]. Medical Journal of Chinese People’s Liberation Army, 2004, 29: 345–347. (in Chinese)

    Google Scholar 

  25. PIETERS R, LOONEN A H, HUISMANS D R, BROEKEMA G J, DIRVEN M W, HEYENBROK M W, HAHLEN K, VEERMAN A J. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions [J]. Blood, 1990, 76(11): 2327–2336.

    Google Scholar 

  26. LI Yun-tao, LIU Jing, ZHONG Yue-jiao, ZHANG Jia, WANG Zi-yu, WANG Li, AN Yan-li, LIN Mei, GAO Zhi-qiang, ZHANG Dongheng. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo [J]. International Journal of Nanomedicine, 2011, 6: 2805–2819.

    Article  Google Scholar 

  27. KIM D H, LEE S H, KIM K N, SHIM I B, LEE Y K. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application [J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 287–292.

    Article  MathSciNet  Google Scholar 

  28. KARLSSON H L, GUSTAFSSON J, CRONHOLM P, MÖLLER L. Size-dependent toxicity of metal oxide particles—A comparison between nano-and micrometer size [J]. Toxicology Letters, 2009, 188(2): 112–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-hua Tian  (田庆华).

Additional information

Foundation item: Project(2013DFA5129) supported by the International Science and Technology Cooperation Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Qh., Ning, Wb., Wang, Wj. et al. Synthesis of size-controllable Fe3O4 magnetic submicroparticles and its biocompatible evaluation in vitro. J. Cent. South Univ. 23, 2784–2791 (2016). https://doi.org/10.1007/s11771-016-3341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3341-4

Keywords

Navigation