Skip to main content
Log in

Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Folic acid conjugated chitosan was prepared by cross-linking reaction with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and then used as a template to prepare folic acid-chitosan (FA–CS) conjugated nanoparticles and load mitoxantrone nanoparticles (FA-CSNP/MTX). Drug dissolution testing, CCK-8 method, and confocal microscopy were used to detect their controlled-release capability in different situations and the specific uptake by HONE1 cells. The experimental results show that the nanoparticles have uniform size distribution of 48–58 nm. The highest encapsulation rate of the particles on mitoxantrone hydrochloride (MTX) is (77.5±1.9)%, and the drug loading efficiency is (18.4±0.4)%. The sustained release effect, cell growth inhibition activity and targeting effect of the FA-CS/MTX nanoparticles are good in artificial gastric fluid and intestinal fluid. It is demonstrated that the FA-CSNP system is a potentially useful system for the targeted delivery of anticancer drug MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LOUNKINE E, KEISER M J, WHITEBREAD S, MIKHAILOV D, HAMON J, JENKINS J L, LAVAN P, WEBER E, DOAK A K, COTE S, SHOICHET B K, URBAN L. Large-scale prediction and testing of drug activity on side-effect targets [J]. Nature, 2012, 486(7403): 361–367.

    Google Scholar 

  2. YIN M Z, ZHAO F L, LOU G, ZHANG H Y, SUN M, LI C, HOU Y, LI X, MENG F L, CHEN X W. The long-term efficacy of neoadjuvant chemotherapy followed by radical hysterectomy compared with radical surgery alone or concurrent chemoradiotherapy on locally advanced-stage cervical cancer [J]. International Journal of Gynecological Cancer, 2011, 21(1): 92–99.

    Google Scholar 

  3. DIAH S K, SMITHERMAN P K, ALDRIDGE J, VOLK E L, SCHNEIDER E, TOWNSEND A J, MORROW C S. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: Evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins [J]. Cancer Research, 2001, 61(14): 5461–5467.

    Google Scholar 

  4. HAGEMEISTER F, CAHANILLAS F, COLEMAN M, GREGORY S A, ZINZANI P L. The role of mitoxantrone in the treatment of indolent lymphomas [J]. The Oncologist, 2005, 10(2): 150–159.

    Article  Google Scholar 

  5. ADVANI A S, SHADMAN M, ALI-OSMAN F, BARKER A, RYBICKI L, KALAYCIO M, SEKERES M A, de CASTRO C M, DIEHL L F, MOORE J O, BEAVEN A, COPELAN E, SOBECKS R, TALEA P, RIZZIERI D A. A Phase II trial of gemcitabine and mitoxantrone for patients with acute myeloid leukemia in first relapse [J]. Clinical lymphoma, Myeloma & Leukemia, 2010, 10(6): 473–476.

    Article  Google Scholar 

  6. MEIER R, HENNING T D, BODDINGTON S, TAVRI S, ARORA S, PIONTEK G, RUDELIUS M, COROT C, DALDRUP-LINK H E. Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133 [J]. Radiology, 2010, 255(2): 527–535.

    Article  Google Scholar 

  7. LAMMERS T, HENNINK W E, STORM G. Tumour-targeted uanomedicines: Principles and practice [J]. British Journal of Cancer, 2008, 99(3): 392–397.

    Article  Google Scholar 

  8. CHEN W S, OU W Z, WANG L Q, HAO Y Q, CHENG J H, LI J, LIU Y N. Self-reporting liposomes for intracellular drug release [J]. Small, 2014, 10(7): 1261–1265.

    Article  Google Scholar 

  9. HUANG Q Y, ZHANG L L, SUN X Y, ZENG K, LI J, LIU Y N. Coating of carboxymethyl dextran on liposomal curcumin to improve the anticancer activity [J]. RSC Advances, 2014, 4: 59211–59217.

    Article  Google Scholar 

  10. MAJETI N V, RAVI K. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46(1): 1–27.

    Article  Google Scholar 

  11. BHATTARAI N, GUNN J, ZHANG M. Chitosan-based hydrogels for controlled, localized drug delivery [J]. Advanced Drug Delivery Reviews, 2010, 62(1): 83–99.

    Article  Google Scholar 

  12. AMIDI M, MASTROBATTISTA E, JISKOOT W, HENNINK W E. Chitosan-based delivery systems for protein therapeutics and antigens [J]. Advanced Drug Delivery Reviews, 2010, 62 (1): 59–82.

    Google Scholar 

  13. OHYA Y, TAKEI T, KOBAYASHI H, OUCHI T. Release behaviour of 5-fluorouracil from chitosan gelmicrospheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition [J]. Journal of Microencapsule, 1993, 10(1): 1–9.

    Article  Google Scholar 

  14. DENKBAS E B, SEYYAL M, PISKIN E. 5-fluorouracil loaded chitosan microspheres for chemoembolization [J]. Journal of Microencapsule, 1999, 16(6): 741–749.

    Article  Google Scholar 

  15. ARIAS J L, LOPEZ-VIOTA M, GALLARDO V, ADOLFINA R M. Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur [J]. Drug Development and Industrial Pharmacy, 2010, 36(6): 744–750.

    Article  Google Scholar 

  16. CHAKRAVARTHI S S, ROBINSON D H. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles [J]. International Journal of Pharmaceutics, 2011, 409(1/2): 111–120.

    Google Scholar 

  17. SINHA V R, SINGLA A K, WADHAWAN S, KAUSHIK R, KUMRIA R, BANSAL K, DHAWAN S. Chitosan microspheres as a potential carrier for drugs [J]. International Journal of Pharmaceutics, 2004, 274(1/2): 1–33.

    Google Scholar 

  18. ALPAR H O, SOMAVARAPU S, ATUAH K N, BRAMWELL V W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery [J]. Advanced Drug Delivery Reviews, 2005, 57(3): 411–430.

    Article  Google Scholar 

  19. LIU C B, WANG X J, LIU R H, WU Y L, LUO S L. A new multifunctional polymer: Synthesis and characterization of mPEGb-PAA-grafted chitosan copolymer [J]. Journal of Central South University of Technology, 2010, 17(5): 936–942.

    Article  Google Scholar 

  20. RUOLAHTI E, BHATIA S N, SAILOR M J. Targeting of drugs and nanoparticles to tumors [J]. The Journal of Cell Biology, 2010, 188(6): 759–768.

    Article  Google Scholar 

  21. YU B, TAI H C, XUE W, LEE L J, LEE R J. Receptor-targeted nanocarriers for therapeutic delivery to cancer [J]. Molecular Membrane Biology, 2010, 27(7): 286–298.

    Article  Google Scholar 

  22. LEAMON C P, LOW P S. Folate-mediated targeting: From diagnostics to drug and gene delivery [J]. Drug Discovery Today, 2001, 6(1): 44–51.

    Article  Google Scholar 

  23. MULLER C, SCHIBLI R. Folic acid conjugates for nuclear imaging of folate receptor-positive cancer [J]. Journal of Nuclear Medicine, 2011, 52(1): 1–4.

    Article  Google Scholar 

  24. VAITILINGAM B, CHELVAM V, KULARATNE S A, POH S, AYALA-LOPEZ W, LOW P S. A folate receptor-a-specific ligand that targets cancer tissue and not sites of inflammation [J]. Journal of Nuclear Medicine, 2012, 53(7): 1127–1134.

    Article  Google Scholar 

  25. PAULOS C M, REDDY J A, LEAMON C P, TURK M J, LOW P S. Ligand binding and kinetics of folate receptor recycling in vivo: Impact on receptor-mediated drug delivery [J]. Molecular Pharmaceutics, 2004, 66(6): 1406–1414.

    Google Scholar 

  26. LI P, WANG Y, ZENG F, CHEN L, PENG Z, KONG L X. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells [J]. Carbohydrate Research, 2011, 346: 801–806.

    Article  Google Scholar 

  27. DU Y Z, CAI L L, LI J, ZHAO M D, CHEN F Y, YUAN H, HU F Q. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles [J]. International Journal of Nanomedicine, 2011, 6: 1559–1568.

    Article  Google Scholar 

  28. LU Y, LOW P S. Folate-mediated delivery of macromolecular anticancer therapeutic agents [J]. Advanced Drug Delivery Reviews, 2002, 54(5): 675–693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong  (熊炜).

Additional information

Foundation item: Projects(31201074, 81371013) supported by the National Natural Science Foundation of China; Project(2011105102016) supported by the Key Program of Medical Health of Dongguan City, Guangdong Province, China; Project(2011108102026) supported by Dongguan Universities Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tong, Cy., Liu, Xy. et al. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone. J. Cent. South Univ. 22, 3311–3317 (2015). https://doi.org/10.1007/s11771-015-2871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2871-5

Keywords

Navigation