Skip to main content
Log in

Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This report describes the use of ethnolic extract of Fagopyrum esculentum leaves for the synthesis of gold nanoparticles. UV-visible spectroscopy analysis indicated the successful formation of gold nanoparticles. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and were found to be spherical, hexagonal and triangular in shape with an average size of 8.3 nm. The crystalline nature of the gold nanoparticles was confirmed from X-ray diffraction (XRD) and selected-area electron diffraction (SAED) patterns. Fourier transform infrared (FT-IR) and energy-dispersive X-ray analysis (EDX) suggested the presence of organic biomolecules on the surface of the gold nanoparticles. Cytotoxicity tests against human HeLa, MCF-7 and IMR-32 cancer cell lines revealed that the gold nanoparticles were non-toxic and thus have potential for use in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzazy H M, Mansour M M, Kazmierczak S C. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clinical Chemistry, 2006, 52(7): 1238–1246

    Article  CAS  Google Scholar 

  2. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60(11): 1289–1306

    Article  CAS  Google Scholar 

  3. Han G, Ghosh P, Rotello V M. Multi-functional gold nanoparticles for drug delivery. Advances in Experimental Medicine and Biology, 2007, 620: 48–56

    Article  Google Scholar 

  4. Han G, Ghosh P, Rotello V M. Functionalized gold nanoparticles for drug delivery. Nanomedicine, 2007, 2(1): 113–123

    Article  CAS  Google Scholar 

  5. Jain K K. Role of nanobiotechnology in developing personalized medicine for cancer. Technology in Cancer Research and Treatment, 2005, 4(6): 645–650

    CAS  Google Scholar 

  6. Jain K K. Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta, 2005, 358(1–2): 37–54

    Article  CAS  Google Scholar 

  7. Jain K K. Applications of nanobiotechnology in clinical diagnostics. Clinical Chemistry, 2007, 53(11): 2002–2009

    Article  CAS  Google Scholar 

  8. Longmire M, Choyke P L, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine, 2008, 3(5): 703–717

    Article  CAS  Google Scholar 

  9. Sonvico F, Dubernet C, Colombo P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Current Pharmaceutical Design, 2005, 11(16): 2091–2105

    Article  CAS  Google Scholar 

  10. Sperling R A, Gil P R, Zhang F, et al. Biological applications of gold nanoparticles. Chemical Society Reviews, 2008, 37(9): 1896–1908

    Article  CAS  Google Scholar 

  11. Yang D-P, Cui D-X. Advances and prospects of gold nanorods. Chemistry — An Asian Journal, 2008, 3(12): 2010–2022

    Article  CAS  Google Scholar 

  12. Walsh D, Arcelli L, Ikoma T, et al. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390

    Article  CAS  Google Scholar 

  13. Yang M D, Liu Y K, Shen J L, et al. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters. Optics Express, 2008, 16(20): 15754–15758

    Article  CAS  Google Scholar 

  14. Kim WB, Voitl T, Rodriguez-Rivera G J, et al. Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts. Science, 2004, 305(5688): 1280–1283

    Article  CAS  Google Scholar 

  15. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346

    Article  CAS  Google Scholar 

  16. Esumi K, Suzuki K A, Torigoe K. Preparation of gold nanoparticles in formamide and N,N dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189(1–3): 155–161

    Article  CAS  Google Scholar 

  17. Feitz A G J, Waite D. Process for producing a nanoscale zerovalent metal by reduction of inorganic salts with dithionite or borohydride. Australia: CRC for Waste Management and Pollution Control Limited, 2004, 36

    Google Scholar 

  18. Lin J, Zhou W, O’Connor C J. Formation of ordered arrays of gold nanaoparticles from CTAB reverse micelles. Materials Letters, 2001, 49(5): 282–286

    Article  CAS  Google Scholar 

  19. Beveridge T J, Murray R G. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 1980, 141(2): 876–887

    CAS  Google Scholar 

  20. Konish Y, Deshmukh N, Tsukiyama T, et al. Microbial preparation of gold nanoparticles by anaerobic bacterium. Transactions of the Materials Research Society of Japan, 2004, 29(5): 2341–2343

    Google Scholar 

  21. Mukherjee P, Ahmad A, Mandal M, et al. Bioreduction of AuCl-4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition, 2001, 40(19): 3585–3588

    Article  CAS  Google Scholar 

  22. Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10): 105104

    Article  Google Scholar 

  23. Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research, 2009, 11(5): 1075–1085

    Article  CAS  Google Scholar 

  24. Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces, 2009, 68(1): 55–60

    Article  CAS  Google Scholar 

  25. Shankar S S, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004, 275(2): 496–502

    Article  CAS  Google Scholar 

  26. Ihme N, Kiesewetter H, Jung F, et al. Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. European Journal of Clinical Pharmacology, 1996, 50(6): 443–447

    Article  CAS  Google Scholar 

  27. Nestler J E, Jakubowicz D J, Reamer P, et al. Ovulatory and metabolic effects of d-chiro-inositol in the polycystic ovary syndrome. The New England Journal of Medicine, 1999, 340(17): 1314–1320

    Article  CAS  Google Scholar 

  28. Iuorno M J, Jakubowicz D J, Baillargeon J-P, et al. Effects of Dchiroinositol in lean women with the polycystic ovary syndrome. Endocrine Practice, 2002, 8(6): 417–423

    Google Scholar 

  29. Tomotake H, Shimaoka I, Kayashita J, et al. Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Bioscience, Biotechnology, and Biochemistry, 2001, 65(6): 1412–1414

    Article  CAS  Google Scholar 

  30. Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 2003, 80(1): 9–15

    Article  CAS  Google Scholar 

  31. Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4649–4652

    Article  CAS  Google Scholar 

  32. Horbowicz M, Brenac P, Obendorf R L. Fagopyritol B1, O-α-Dgalactopyranosyl-(1→2)-d-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta, 1998, 205(1): 1–11

    Article  CAS  Google Scholar 

  33. Kreft S, Strukelj B, Gaberscik A, et al. Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany, 2002, 53(375): 1801–1804

    Article  CAS  Google Scholar 

  34. Patel K, Kapoor S, Dave D P, et al. Synthesis of nanosized silver colloids by microwave dielectric heating. Journal of Chemical Sciences, 2005, 117(1): 53–60

    Article  CAS  Google Scholar 

  35. Yin H B, Yamamoto T, Wada Y J, et al. Large-scale and sizecontrolled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 2004, 83(1): 66–70

    Article  CAS  Google Scholar 

  36. Quettier-Deleu C, Gressier B, Vasseur J, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 2000, 72(1–2): 35–42

    Article  CAS  Google Scholar 

  37. Raghunandan D, Basavaraja S, Mahesh B, et al. Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnology, 2009, 5(1–4): 34–41

    Article  CAS  Google Scholar 

  38. Babu P J, Sharma P, Borthakur B B, et al. Synthesis of gold nanoparticles using Mentha arvensis leaf extract. International Journal of Green Nanotechnology: Physics and Chemistry, 2010, 2(2): 62–68

    Article  Google Scholar 

  39. Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters, 2010, 64(13): 1445–1447

    Article  CAS  Google Scholar 

  40. Babu P J, Das R K, Kumar A, et al. Microwave-mediated synthesis of gold nanoparticles using coconut water. International Journal of Green Nanotechnology, 2011, 3(1): 13–21

    Article  CAS  Google Scholar 

  41. Brugnerotto J, Lizardi J, Goycoolea F M, et al. An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001, 42(8): 3569–3580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Bora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, P.J., Sharma, P., Kalita, M.C. et al. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract. Front. Mater. Sci. 5, 379–387 (2011). https://doi.org/10.1007/s11706-011-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0153-1

Keywords

Navigation