Skip to main content
Log in

Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process

  • Research Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

Abstract Biomineralization processes result in organic/inorganic hybrid materials with complex shapes, hierarchical structures, and superior material properties. Recent developments in biomineralization and biomaterials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper, current concepts in biomineralization, such as nano assembly, biomimetic shell structure, and their applications are introduced. It is confirmed experimentally that enamel- or bone-liked apatite can be achieved by oriented aggregations using nano calcium phosphates as starting materials. The assembly of calcium phosphate can be either promoted or inhibited by different biomolecules so that the kinetics can be regulated biologically. In this paper, the role of nano calcium phosphate in tissue repair is highlighted. Furthermore, a new, interesting result on biomimetic mineralization is introduced, which can offer an artificial shell for living cells via a biomimetic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner S, Addadi L. At the cutting edge. Science, 2002, 298(5592): 375–376

    Article  PubMed  Google Scholar 

  2. Mann S. Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001

    Google Scholar 

  3. Boskey A. Biomineralization: conflicts, challenges, and opportu-nities. Journal of Cellular Biochemistry, 1999, 72: 83–91

    Article  Google Scholar 

  4. Gupta H S, Wagermaier W, Zickler G A, et al. Nanoscale deformation mechanisms in bone. Nano Letters, 2005, 5(10): 2108–2111

    Article  PubMed  Google Scholar 

  5. Gao H J, Ji B H, Jager I L, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (10): 5597–5600

    Article  PubMed  ADS  Google Scholar 

  6. Cui F Z, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1: 185–191

    Article  PubMed  Google Scholar 

  7. Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science & Engineering R: Reports, 2007, 57 (1–6): 1–27

    Article  Google Scholar 

  8. Currey J D. Materials science — hierarchies in biomineral structures. Science, 2005, 309(5732): 253–254

    Article  PubMed  Google Scholar 

  9. Giachelli C M. Ectopic calcification — gathering hard facts about soft tissue mineralization. American Journal of Pathology, 1999, 154(3): 671–675

    PubMed  Google Scholar 

  10. Kirsch T. Determinants of pathological mineralization. Current Opinion in Rheumatology, 2006, 18(2): 174–180

    Article  PubMed  Google Scholar 

  11. Christian R C, Fitzpatrick L A. Vascular calcification. Current Opinion in Nephrology and Hypertension, 1999, 8(4): 443–448

    Article  PubMed  Google Scholar 

  12. Feng Q L, Cui F Z, Wang H, et al. Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth, 2000, 210(4): 735–740

    Article  ADS  Google Scholar 

  13. Wang L J, Tang R, Bonstein T, et al. Enamel demineralization in primary and permanent teeth. Journal of Dental Research, 2006, 85 (4): 359–363

    Article  PubMed  Google Scholar 

  14. Boskey A. Bone mineral crystal size. Osteoporosis International, 2003, 14: S16–S20

    Article  Google Scholar 

  15. Narayan R J, Kumta P N, Sfeir C, et al. Nanostructured ceramics in medical devices: applications and prospects. JOM, 2004, 56(10): 38–43

    Article  Google Scholar 

  16. Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4–5): 339–359

    Article  PubMed  Google Scholar 

  17. Xu H H K, Weir M D, Burguera E F, et al. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials, 2006, 27(24): 4279–4287

    Article  PubMed  Google Scholar 

  18. de Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth. Biomineralization, 2003, 54: 57–93

    Google Scholar 

  19. Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie — International Edition, 2003, 42(21): 2350–2365

    Article  PubMed  Google Scholar 

  20. Gilbert B, Banfield J F. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Reviews in Mineralogy and Geochemistry, 2005, 59: 109–155

    Article  Google Scholar 

  21. Banfield J F, Welch S A, Zhang H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289 (5480): 751–754

    Article  PubMed  ADS  Google Scholar 

  22. Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971

    Article  PubMed  ADS  Google Scholar 

  23. Penn R L. Kinetics of oriented aggregation. Journal of Physical Chemistry B, 2004, 108(34): 12707–12712

    Article  Google Scholar 

  24. Huang F, Zhang H Z, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystal-line ZnS. Nano Letters, 2003, 3(3): 373–378

    Article  Google Scholar 

  25. Yang H G, Zeng H C. Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Ange-wandte Chemie — International Edition, 2004, 43(39): 5206–5209

    Article  Google Scholar 

  26. Cho K S, Talapin D V, Gaschler W, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society, 2005, 127(19): 7140–7147

    Article  PubMed  Google Scholar 

  27. Colfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie — International Edition, 2005, 44(35): 5576-5591

  28. Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 2003, 15(12): 959–970

    Article  Google Scholar 

  29. Sethmann I, Putnis A, Grassmann O, et al. Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. American Minera-logist, 2005, 90(7): 1213–1217

    Article  Google Scholar 

  30. Wang T X, Colfen H, Antonietti M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. Journal of the American Chemical Society, 2005, 127(10): 3246–3247

    Article  PubMed  Google Scholar 

  31. Xu A W, Antonietti M, Colfen H, et al. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials, 2006, 16(7): 903–908

    Article  Google Scholar 

  32. Tao J H, Pan H H, Zeng Y W, et al. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapa-tite nanoparticles. Journal of Physical Chemistry B, 2007, 111(47): 13410–13418

    Article  Google Scholar 

  33. Wang L J, Guan X Y, Du C, et al. Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. Journal of Physical Chemistry C, 2007, 111 (17): 6398–6404

    Article  Google Scholar 

  34. Proudfoot D, Skepper J N, Shanahan C M, et al. Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterio-sclerosis Thrombosis and Vascular Biology, 1998, 18(3): 379–388

    Google Scholar 

  35. Puy M C, Rodrìguez-Arias J M, Casan P. Lung calcifications and chronic kidney failure. Arch Bronconeumol, 2007, 43: 349–351

    Article  PubMed  Google Scholar 

  36. Liu P, Tao J H, Cai Y R, et al. Role of fetal bovine serum in the prevention of calcification in biological fluids. Journal of Crystal Growth, 2008, 310(22): 4672–4675

    Article  ADS  Google Scholar 

  37. Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angewandte Chemie — International Edition, 2002, 41(17): 3130–3146

    Article  PubMed  Google Scholar 

  38. Narasaraju T S B, Phebe D E. Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science, 1996, 31(1): 1–21

    Article  ADS  Google Scholar 

  39. Hench L L. Bioceramics — from concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510

    Article  Google Scholar 

  40. de Leeuw N H. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. Journal of Physical Chemistry B, 2004, 108(6): 1809–1811

    Article  Google Scholar 

  41. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 1998, 13 (1): 94–117

    Article  ADS  Google Scholar 

  42. Whitters C J, Strang R, Brown D, et al. Dental materials: 1997 literature review. Journal of Dentistry, 1999, 27(6): 401–435

    Article  PubMed  Google Scholar 

  43. Robinson C, Connell S, Kirkham J, et al. Dental enamel — a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry, 2004, 14(14): 2242–2248

    Article  Google Scholar 

  44. Acil Y, Mobasseri A E, Warnke P H, et al. Detection of mature collagen in human dental enamel. Calcified Tissue International, 2005, 76(2): 121–126

    Article  PubMed  Google Scholar 

  45. Ahn E S, Gleason N J, Nakahira A, et al. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters, 2001, 1(3): 149–153

    Article  Google Scholar 

  46. Li L, Pan H H, Tao J H, et al. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry, 2008, 18(34): 4079–4084

    Article  Google Scholar 

  47. Stupp S I, Braun P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science, 1997, 277 (5330): 1242–1248

    Article  PubMed  Google Scholar 

  48. Cai Y R, Liu Y K, Yan W Q, et al. Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry, 2007, 17(36): 3780–3787

    Article  Google Scholar 

  49. Hu Q H, Tan Z, Liu Y K, et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry, 2007, 17(44): 4690–4698

    Article  Google Scholar 

  50. Sarikaya M. Biomimetics: Materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(25): 14183–14185

    Article  PubMed  ADS  Google Scholar 

  51. Hamm C E, Merkel R, Springer O, et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 2003, 421(6925): 841–843

    Article  PubMed  ADS  Google Scholar 

  52. Wang B, Liu P, Jiang WG, et al. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie — International Edition, 2008, 47(19): 3560–3564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-kang Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Yr., Tang, Rk. Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process. Front. Mater. Sci. China 3, 124–131 (2009). https://doi.org/10.1007/s11706-009-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-009-0026-z

Keywords

Navigation