Skip to main content
Log in

Ductile-to-Brittle Transition in Low-Alloy Steel: A Combined Experimental and Numerical Investigation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ductile-to-brittle transition in a low-alloy bainitic steel used as reactor pressure vessel material coincided with the change in brittle facet plane normal(s). Experimentally, it changed from ~ {100} facets at low temperatures to off-{100} planes at the higher temperatures. And such a change was also associated with brittle-to-ductile transition in the fracture mode. Molecular dynamics simulations, however, showed that the intrinsic cleavage plane remained {100} at all temperatures. Activation of atomistic mechanisms of crack kinking and dislocation pile-up, at higher temperatures, followed by the creation of atomistic ledges at the free surface resulted in the appearance of off-{100} facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available on request by email to the corresponding author.

Notes

  1. This large elastic strain is due to the use of perfect crystal as a starting configuration of the simulation and is like previously reported strain values (Ref 1, 2, 22). Thus, the quantitative comparisons between simulations and experiments are avoided. Hence simulation results will be used only for providing the mechanistic explanations to the experimental results in this manuscript.

References

  1. V.A. Borodin, P.V. Vladimirov, and A. Möslang, The Effects of Temperature on (001) <110> Crack Propagation in Bcc Iron, J. Nucl. Mater., 2013, 442(1–3), p S612–S617. https://doi.org/10.1016/j.jnucmat.2012.10.035

    Article  CAS  Google Scholar 

  2. V.A. Borodin and P.V. Vladimirov, Three-Dimensional Atomistic Modeling of Microcrack Propagation in Iron, J. Nucl. Mater., 2011, 416(1–2), p 49–54. https://doi.org/10.1016/j.jnucmat.2010.12.224

    Article  CAS  Google Scholar 

  3. Y. Watanabe and T. Shoji, The Evaluation of In-Service Materials Degradation of Low-Alloy Steels by the Electrochemical Method, Metall. Trans. A, 1991, 22(9), p 2097–2106

    Article  Google Scholar 

  4. L.M. Davies, A Comparison of Western and Eastern Nuclear Reactor Pressure Vessel Steels, Int. J. Press. Vessel. Pip., 1999, 76(3), p 163–208. https://doi.org/10.1016/S0308-0161(97)00075-6

    Article  CAS  Google Scholar 

  5. B. Gurovich, E. Kuleshova, S. Fedotova, D. Maltsev, O. Zabusov, A. Frolov, D. Erak, and D. Zhurko, Structural Mechanisms of the Flux Effect for VVER-1000 Reactor Pressure Vessel Materials, in Fontevraud 8—Contribution of Materials Investigations and Operating Experience to LWRs’ Safety, Performance and Reliability, France, Avignon—2014, September 14-18, 2014.

  6. S. Mohanty, S. Majumdar, and K. Natesan, A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components (Argonne, IL 60439, 2012).

  7. K.H. Lee, M.J. Jhung, M.C. Kim, and B.S. Lee, Effects of Tempering and PWHT on Microstructures and Mechanical Properties of SA508 GR.4N Steel, Nucl. Eng. Technol., 2014, 46(3), p 413–422. https://doi.org/10.5516/net.07.2013.088

    Article  CAS  Google Scholar 

  8. Y. Nishiyama, K. Onizawa, M. Suzuki, J.W. Anderegg, Y. Nagai, T. Toyama, M. Hasegawa, and J. Kameda, Effects of Neutron-Irradiation-Induced Intergranular Phosphorus Segregation and Hardening on Embrittlement in Reactor Pressure Vessel Steels, Acta Mater., 2008, 56(16), p 4510–4521. https://doi.org/10.1016/j.actamat.2008.05.026

    Article  CAS  Google Scholar 

  9. Y.I. Shtrombakh, B.A. Gurovich, E.A. Kuleshova, A.S. Frolov, S.V. Fedotova, D.A. Zhurko, and E.V. Krikun, Effect of Ni Content on Thermal and Radiation Resistance of VVER RPV Steel, J. Nucl. Mater., 2015, 461, p 292–300. https://doi.org/10.1016/j.jnucmat.2015.02.023

    Article  CAS  Google Scholar 

  10. O.O. Zabusov, B.A. Gurovich, E.A. Kuleshova, M.A. Saltykov, S.V. Fedotova, and A.P. Dementjev, Intergranular Embrittlement of Nuclear Reactor Pressure Vessel Steels, Key Eng. Mater., 2013, 592–593, p 577–581. https://doi.org/10.4028/www.scientific.net/KEM.592-593.577

    Article  CAS  Google Scholar 

  11. B.A. Gurovich, E.A. Kuleshova, Y.I. Shtrombakh, O.O. Zabusov, and E.A. Krasikov, Intergranular and Intragranular Phosphorus Segregation in Russian Pressure Vessel Steels Due to Neutron Irradiation, J. Nucl. Mater., 2000, 279(2–3), p 259–272

    Article  CAS  Google Scholar 

  12. E.A. Kuleshova, B.A. Gurovich, Y.I. Shtrombakh, D.Y. Erak, and O.V. Lavrenchuk, Comparison of Microstructural Features of Radiation Embrittlement of VVER-440 and VVER-1000 Reactor Pressure Vessel Steels, J. Nucl. Mater., 2002, 300(2–3), p 127–140

    Article  CAS  Google Scholar 

  13. B.A. Gurovich, E.A. Kuleshova, O.V. Lavrenchuk, K. Prikhodko, and Y.I. Shtrombakh, The Principal Structural Changes Proceeding in Russian Pressure Vessel Steels as a Result of Neutron Irradiation, Recovery Annealing and Re-irradiation, J. Nucl. Mater., 1999, 264(3), p 333–353

    Article  CAS  Google Scholar 

  14. W.R. Broughton and P.J.K. Paterson, Effect of Heat Treatment on Grain-Boundary Chemistry and Susceptibility to Embrittlement in Two Low Alloy Steels, Appl. Surf. Sci., 1983, 15, p 120–128

    Article  CAS  Google Scholar 

  15. B.A. Gurovich, E.A. Kuleshova, Y.A. Nikolaev, and Y.I. Shtrombakh, Assessment of Relative Contributions from Different Mechanisms to Radiation Embrittlement of Reactor Pressure Vessel Steels, J. Nucl. Mater., 1997, 246(2–3), p 91–120. https://doi.org/10.1016/S0022-3115(97)00103-7

    Article  CAS  Google Scholar 

  16. L. Debarberis, B. Acosta, A. Zeman, S. Pirfo, P. Moretto, P. Chernobaeva, and Y. Nikoleav, Evaluation of Temper Embrittlement of 30Cr2MoV Rotor Steels Using Electrochemical Impedance Spectroscopy Technique, Int. J. Microstruct. Mater. Prop., 2007, 2(3/4), p 326–338

    CAS  Google Scholar 

  17. W.R. Corwin, G.R. Odette, R.E. Stoller, and J.A. Wang, Thermal Embrittlement of Reactor Vessel Steels, in International Conference on Structural Mechanics in Reactor Technology, CONF-950804–3 (United States, 1995).

  18. S. Druce, G. Gage, and G. Jordan, Effect of Ageing on Properties of Pressure Vessel Steels, Acta Metall., 1986, 34(4), p 641–652. https://doi.org/10.1016/0001-6160(86)90179-3

    Article  CAS  Google Scholar 

  19. A.A. Griffith, The Phenomena of Rupture and Flow in Solids, R. Soc. Lond., 1920, 221(A-587), p 163–198

    Google Scholar 

  20. J.R. Rice and R. Thomson, Ductile Versus Brittle Behaviour of Crystals, Philos. Mag., 1974, 29(1), p 73–97

    Article  CAS  Google Scholar 

  21. J.R. Rice, Dislocation Nucleation from a Crack Tip : An Analysis Based on the Peierls Concept, J. Mech. Phys. Solids, 1992, 40(2), p 239–271

    Article  CAS  Google Scholar 

  22. V.A. Borodin and P.V. Vladimirov, Molecular Dynamics Simulations of Quasi-Brittle Crack Development in Iron, J. Nucl. Mater., 2011, 415(3), p 320–328. https://doi.org/10.1016/j.jnucmat.2011.04.052

    Article  CAS  Google Scholar 

  23. M.-Y. Tu, W.-H. Wang, and Y.-F. Hsu, Crystallographic and Fractographic Analysis of Upper Bainite, Mater. Trans., 2008, 49(3), p 559–564

    Article  CAS  Google Scholar 

  24. J.Q. Clayton and J.F. Knott, Observations of Fibrous Fracture Modes in a Prestrained Low-Alloy Steel, Met. Sci., 1976, 10, p 63–71

    Article  CAS  Google Scholar 

  25. W.M. Garrison and N.R. Moody, Ductile Fracture, J. Phys. Chem. Solids, 1987, 48(11), p 1035–1074. https://doi.org/10.1016/0022-3697(87)90118-1

    Article  CAS  Google Scholar 

  26. P. Gumbsch, Brittle Fracture and the Brittle-to-Ductile Transition of Tungsten, J. Nucl. Mater., 2003, 323(2–3), p 304–312

    Article  CAS  Google Scholar 

  27. B. DeCelis, A.S. Argon, and S. Yip, Molecular Dynamics Simulation of Crack Tip Processes in Alpha-Iron and Copper, J. Appl. Phys., 1983, 54(9), p 4864–4878

    Article  CAS  Google Scholar 

  28. S. Kohlhoff, P. Gumbsch, and H.F. Fischmeister, Crack Propagation in b.c.c. Crystals Studied with a Combined Finite-Element and Atomistic Model, Philos. Mag. A Phys. Condens. Matter. Struct. Defects Mech. Prop., 1991, 64(4), p 851–878

    Google Scholar 

  29. V. Shastry and D. Farkas, Molecular Statics Simulation of Fracture in α-Iron, Model. Simul. Mater. Sci. Eng., 1996, 4(5), p 473–492

    Article  CAS  Google Scholar 

  30. J.J. Möller and E. Bitzek, Comparative Study of Embedded Atom Potentials for Atomistic Simulations of Fracture in α-Iron, Model. Simul. Mater. Sci. Eng., 2014, 22(4), p 045002. https://doi.org/10.1088/0965-0393/22/4/045002

    Article  CAS  Google Scholar 

  31. J. Kim, Improvement of Impact Toughness of the SA 508 Class 3 Steel for Nuclear Pressure Vessel Through Steel-Making and Heat-Treatment Practices, Nucl. Eng. Des., 1997, 174(1), p 51–58. https://doi.org/10.1016/S0029-5493(97)00068-X

    Article  CAS  Google Scholar 

  32. J. Fukakura, M. Asano, M. Kikuchi, and M. Ishikawa, Effect of Thermal Aging on Fracture Toughness of RPV Steel, Nucl. Eng. Des., 1993, 144(3), p 423–429

    Article  CAS  Google Scholar 

  33. Y. Sakai, K. Tamanoi, and N. Ogura, Application of Tanh Curve Fit Analysis to Fracture Toughness Data of Japanese RPVS, Nucl. Eng. Des., 1989, 115(1), p 31–39

    Article  CAS  Google Scholar 

  34. M.J. DeVan, I.A.L. Lowe, C.S. Wade, A.S. Kumar, D.S. Gelles, R.K. Nanstad, E.A. Little, Evaluation of Thermal-Aged Plates, Forgings, and Submerged-Arc Weld Metals, in Effects of Radiation on Materials: 16th International Symposium, ASTM STP 1175 (Philedelphia, 1993).

  35. K.S. Cheung and S. Yip, A Molecular-Dynamics Simulation of Crack-Tip Extension: The Brittle-to-Ductile Transition, Model. Simul. Mater. Sci. Eng., 1994, 2(4), p 865–892. https://doi.org/10.1088/0965-0393/2/4/005

    Article  CAS  Google Scholar 

  36. D. Terentyev and F. Gao, Blunting of a Brittle Crack at Grain Boundaries: An Atomistic Study in BCC Iron, Mater. Sci. Eng. A, 2013, 576, p 231–238. https://doi.org/10.1016/j.msea.2013.04.012

    Article  CAS  Google Scholar 

  37. Y.F. Guo and Y.C. Gao, Combined Atomistic Simulation and Continuum Mechanics: Size-Dependent Behavior of Atomistic Simulation for Brittle Fracture in Bcc-Iron, Comput. Mater. Sci., 2006, 36(4), p 432–439

    Article  CAS  Google Scholar 

  38. X. Xing, M. Yu, W. Chen, and H. Zhang, Atomistic Simulation of Hydrogen-Assisted Ductile-to-Brittle Transition in Alpha-Iron, Comput. Mater. Sci., 2017, 127, p 211–221. https://doi.org/10.1016/j.commatsci.2016.10.033

    Article  CAS  Google Scholar 

  39. J. Prahl, A. Machová, A. Spielmannová, M. Karlík, M. Landa, P. Haušild, and P. Lejček, Ductile-Brittle Behavior at the (1 1 0)[0 0 1] Crack in Bcc Iron Crystals Loaded in Mode I, Eng. Fract. Mech., 2010, 77(2), p 184–192

    Article  Google Scholar 

  40. Y.F. Guo and C.Y. Wang, Atomistic Study of Lattice Trapping Behavior for Brittle Fracture in Bcc-Iron, Comput. Mater. Sci., 2007, 40(3), p 376–381

    Article  CAS  Google Scholar 

  41. B. Ma, 3D Molecular Dynamic Simulation of Fracture Behavior of Bcc Iron, in Proceedings of the 2nd International Conference on Electronic Mechanical Engineering and Information Technology (2012), pp. 2263–2266. https://doi.org/10.2991/emeit.2012.501.

  42. M. Mendelev, S. Han, D. Srolovitz, G. Acklnad, D. Sun, and M. Asta, Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron, Philos. Mag., 2003, 83, p 3977–3994

    Article  CAS  Google Scholar 

  43. X.W. Zhou, J.A. Zimmerman, E.D. Reedy, and N.R. Moody, Molecular Dynamics Simulation Based Cohesive Surface Representation of Mixed Mode Fracture, Mech. Mater., 2008, 40(10), p 832–845

    Article  Google Scholar 

  44. A. Uhnáková, J. Pokluda, A. MacHová, and P. Hora, 3D Atomistic Simulation of Fatigue Behavior of a Ductile Crack in Bcc Iron Loaded in Mode II, Comput. Mater. Sci., 2012, 61, p 12–19

    Article  CAS  Google Scholar 

  45. A. Uhnáková, J. Pokluda, A. MacHová, and P. Hora, 3D Atomistic Simulation of Fatigue Behaviour of Cracked Single Crystal of Bcc Iron Loaded in Mode III, Int. J. Fatigue, 2011, 33(12), p 1564–1573

    Article  CAS  Google Scholar 

  46. A. Uhnáková, A. MacHová, and P. Hora, 3D Atomistic Simulation of Fatigue Behavior of a Ductile Crack in Bcc Iron, Int. J. Fatigue, 2011, 33(9), p 1182–1188

    Article  CAS  Google Scholar 

  47. A. Machová, J. Pokluda, A. Uhnáková, and P. Hora, 3D Atomistic Studies of Fatigue Behaviour of Edge Crack (0 0 1) in Bcc Iron Loaded in Mode I, and II, Int. J. Fatigue, 2014, 66, p 11–19

    Article  CAS  Google Scholar 

  48. A. Uhnáková, A. MacHová, P. Hora, J. Červ, and T. Kroupa, Stress Wave Radiation from the Cleavage Crack Extension in 3D Bcc Iron Crystals, Comput. Mater. Sci., 2010, 50(2), p 678–685

    Article  CAS  Google Scholar 

  49. T. Liu and M.S. Liu, Atomistic Simulation of Fatigue Crack Growth in α-Fe Under High Temperature, Appl. Mech. Mater., 2015, 750, p 226–235. https://doi.org/10.4028/www.scientific.net/AMM.750.226

    Article  Google Scholar 

  50. R.E. Roman and S.W. Cranford, Mechanical Properties of Silicene, Comput. Mater. Sci., 2014, 82, p 50–55. https://doi.org/10.1016/j.commatsci.2013.09.030

    Article  CAS  Google Scholar 

  51. S. Shao, H.M. Zbib, I.N. Mastorakos, and D.F. Bahr, The Void Nucleation Strengths of the Cu-Ni-Nb-Based Nanoscale Metallic Multilayers Under High Strain Rate Tensile Loadings, Comput. Mater. Sci., 2014, 82, p 435–441. https://doi.org/10.1016/j.commatsci.2013.09.036

    Article  CAS  Google Scholar 

  52. K. Zhao, I. Gudem Ringdalen, J. Wu, J. He, and Z. Zhang, Ductile Mechanisms of Metals Containing Pre-existing Nanovoids, Comput. Mater. Sci., 2016, 125(October 2017), p 36–50

    Article  CAS  Google Scholar 

  53. M.Q. Le and R.C. Batra, Crack Propagation in Pre-strained Single Layer Graphene Sheets, Comput. Mater. Sci., 2014, 84, p 238–243. https://doi.org/10.1016/j.commatsci.2013.12.007

    Article  CAS  Google Scholar 

  54. Z. Zhao and F. Chu, Molecular Dynamics Simulation of Crack Initiation and Propagation in Bcc Iron Under Load Within Spur Gear Tooth Root, Fatigue Fract. Eng. Mater. Struct., 2018, 41(2), p 323–335

    Article  Google Scholar 

  55. J. Zhang, Molecular Dynamics Study of Crack Propagation Behavior and Mechanisms in Nickel, The Ohio State University, Ohio, 2011

    Google Scholar 

  56. T. Liu and M. Liu, Atomistic Simulation of Fatigue Crack Growth in α-Fe under High Temperature, In 13th International Conference on Fracture (Beijing, China, 2013), pp. 1–11.

  57. J.J. Möller and E. Bitzek, On the Influence of Crack Front Curvature on the Fracture Behavior of Nanoscale Cracks, Eng. Fract. Mech., 2015, 150, p 197–208

    Article  Google Scholar 

  58. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 15012

    Article  Google Scholar 

  59. A. Scheid, L.M. Félix, D. Martinazzi, T. Renck, and C.E. Fortis Kwietniewski, The Microstructure Effect on the Fracture Toughness of Ferritic Ni-Alloyed Steels, Mater. Sci. Eng. A, 2016, 661, p 96–104. https://doi.org/10.1016/j.msea.2016.03.019

    Article  CAS  Google Scholar 

  60. A.V. Nikolaeva, Y.A. Nikolaev, and A.M. Kryukov, The Contribution of Grain Boundary Effects to Low-Alloy Steel Irradiation Embrittlement, J. Nucl. Mater., 1995, 218(1), p 85–93

    Article  CAS  Google Scholar 

  61. J. Li, C. Zhang, and Y. Liu, Influence of Carbides on the High-Temperature Tempered Martensite Embrittlement of Martensitic Heat-Resistant Steels, Mater. Sci. Eng. A, 2016, 670, p 256–263. https://doi.org/10.1016/j.msea.2016.06.025

    Article  CAS  Google Scholar 

  62. K.H. Lee, M.C. Kim, W.J. Yang, and B.S. Lee, Evaluation of Microstructural Parameters Controlling Cleavage Fracture Toughness in Mn-Mo-Ni Low Alloy Steels, Mater. Sci. Eng. A, 2013, 565, p 158–164. https://doi.org/10.1016/j.msea.2012.12.024

    Article  CAS  Google Scholar 

  63. R.H. Dauskardt, R.D. Pendse, and R.O. Ritchie, Effects of Pre-existing Grain Boundary Microvoid Distributions on Fracture Toughness and Fatigue Crack Growth in Low Alloy Steel, Acta Metall., 1987, 35(9), p 2227–2242

    Article  CAS  Google Scholar 

  64. P. Bowen, S.G. Druce, and J.F. Knott, Effects of Microstructure on Cleavage Fracture in Pressure Vessel Steel, Acta Metall., 1986, 34(6), p 1121–1131. https://doi.org/10.1016/0001-6160(86)90222-1

    Article  CAS  Google Scholar 

  65. W.D. Biggs and P.L. Pratt, The Deformation and Fracture of Alpha-Iron at Low Temperatures, Acta Metall., 1958, 6(11), p 694–703

    Article  CAS  Google Scholar 

  66. D. Hull, Twining and Fracture of Single Crystals of 3% Silicon Iron, Acta Metall., 1960, 8, p 11–18

    Article  CAS  Google Scholar 

  67. R. Honda, Cleavage Fracture in Single Crystals of Silicon Iron, J. Phys. Soc. Jpn., 1961, 16(7), p 1309–1321

    Article  CAS  Google Scholar 

  68. Y.F. Guo and D.L. Zhao, Atomistic Simulation of Structure Evolution at a Crack Tip in Bcc-Iron, Mater. Sci. Eng. A, 2007, 448(1–2), p 281–286. https://doi.org/10.1016/j.msea.2006.10.033

    Article  CAS  Google Scholar 

  69. I.R. Vatne, E. Østby, and C. Thaulow, Multiscale Simulations of Mixed-Mode Fracture in Bcc-Fe, Model. Simul. Mater. Sci. Eng., 2011, 19(8), p 1–18. https://doi.org/10.1088/0965-0393/19/8/085006

    Article  CAS  Google Scholar 

  70. A.S. Tetelman and W.D. Robertson, Direct Observation and Analysis of Crack Propagation in Iron-3 Percent Silicon Single Crystals, Acta Metall., 1963, 11, p 415–425. https://doi.org/10.1016/0001-6160(63)90166-4

    Article  CAS  Google Scholar 

  71. M. Allen, Introduction to Molecular Dynamics Simulation, Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, Vol. 23, John von Neumann Institute for Computing, 2004, p 1–28. http://www.fzj.helmholtz.de/nic-series/volume23/allen.pdf

  72. F.F. Abraham, D. Brodbeck, W.E. Rudge, and X. Xu, A Molecular Dynamics Investigation of Rapid Fracture Mechanics, J. Mech. Phys. Solids, 1997, 45(9), p 1595–1619

    Article  CAS  Google Scholar 

  73. L. Ma, S. Xiao, H. Deng, and W. Hu, Molecular Dynamics Simulation of Fatigue Crack Propagation in Bcc Iron Under Cyclic Loading, Int. J. Fatigue, 2014, 68, p 253–259. https://doi.org/10.1016/j.ijfatigue.2014.04.010

    Article  CAS  Google Scholar 

  74. E. Bitzek, J.R. Kermode, and P. Gumbsch, Atomistic Aspects of Fracture, Int. J. Fract., 2015, 191(1–2), p 13–30

    Article  Google Scholar 

  75. G. Sainath, B.K. Choudhary, and T. Jayakumar, Molecular Dynamics Simulation Studies on the Size Dependent Tensile Deformation and Fracture Behaviour of Body Centred Cubic Iron Nanowires, Comput. Mater. Sci., 2015, 104, p 76–83. https://doi.org/10.1016/j.commatsci.2015.03.053

    Article  CAS  Google Scholar 

  76. S.P. Ju, J. Sen Lin, H.L. Chen, J.Y. Hsieh, H.T. Chen, M.H. Weng, J.J. Zhao, L.Z. Liu, and M.C. Chen, A Molecular Dynamics Study of the Mechanical Properties of a Double-Walled Carbon Nanocoil, Comput. Mater. Sci., 2014, 82, p 92–99. https://doi.org/10.1016/j.commatsci.2013.09.024

    Article  CAS  Google Scholar 

  77. F. Calvo, Molecular Dynamics Determination of the Surface Tension of Silver-Gold Liquid Alloys and the Tolman Length of Nanoalloys, J. Chem. Phys., 2012, 136(15), p 154701

    Article  CAS  Google Scholar 

  78. O.K. Kwon, H.J. Hwang, and J.W. Kang, Molecular Dynamics Simulation Study on Cross-Type Graphene Resonator, Comput. Mater. Sci., 2014, 82, p 280–285. https://doi.org/10.1016/j.commatsci.2013.09.053

    Article  CAS  Google Scholar 

  79. X. Ou, Molecular Dynamics Simulations of Fcc-to-Bcc Transformation in Pure Iron: A Review, Mater. Sci. Technol. U. K., 2017, 33(7), p 822–835

    Article  CAS  Google Scholar 

  80. H. Akbarzadeh, H. Abroshan, and G.A. Parsafar, Surface Free Energy of Platinum Nanoparticles at Zero Pressure: A Molecular Dynamic Study, Solid State Commun., 2010, 150(5–6), p 254–257. https://doi.org/10.1016/j.ssc.2009.11.013

    Article  CAS  Google Scholar 

  81. J. Shi, L. Peng, M. Ye, Defect Effects on Grain Boundary Strength in Fe: A Molecular Dynamics Simulation*, in IEEE 26th Symposium on Fusion Engineering IEEE 26th Symposium on Fusion Engineering (Austin, TX, USA, IEEE, 2015), pp. 1–4.

  82. D.P. Field, Recent Advances in the Application of Orientation Imaging, Ultramicroscopy, 1997, 67(1–4), p 1–9

    Article  CAS  Google Scholar 

  83. S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson, Introduction and Comparison of New EBSD Post-processing Methodologies, Ultramicroscopy, 2015, 159(P1), p 81–94. https://doi.org/10.1016/j.ultramic.2015.08.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Mani Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

EBSD of Fracture Surface for Determination of the Cleavage Facet Orientation

One of the principle limitations in employing the EBSD on fractured samples with facets (characteristic of brittle cleavage regions) is the unknown value of the sample’s local surface inclination with the incident electron beam. This angle is termed as tilt angle. Since the fractured facets can have arbitrary facet orientations, majority of the time the facet inclination is not supportive for the recording good quality Kikuchi patterns. Additionally, there can be shadow effect of other intervening facets. However, statistically some facets can have their surface inclination near the desirable value of ~ 70° from the incident beam. They can give rise to the solvable Kikuchi patterns. These patterns are hence amenable for orientation determination by EBSD with the assumption of surface being at 70° tilt to the incident beam. Any such measurement would, however, be associated with ‘error’. This ‘error’ was quantified in terms of two commonly known EBSD solution parameters: Confidence Index (CI) and Fit (Ref 82, 83).

The ‘error’ estimation involved an exercise similar in principle as the one proposed by David Field (Ref 82). As shown in Fig. 12, 400 × 400 micron scans were taken at different tilt angles: 60°-74°, and at 2° steps. CI and Fit values were estimated from such scans. As shown in Fig. 12, they showed the highest CI or lowest fit at 70° ± 2°. It was hence proposed that if measurement (albeit manual) of a faceted (and unpolished) surface had the highest CI (~ 0.9) and lowest fit (~ 0.1), then ‘error’ in orientation estimation is limited to ± 2°. The measurements presented in Fig. 4 are thus expected to have a measurement uncertainty of ± 2°.

Fig. 12
figure 12

The variation in the average confidence index (CI) and fit as a function of tilt angle. The data were generated from 400 × 400 micron scans of the typical martensitic structure (as in Fig. 2) of the Mn-Ni-Mo steel. Highest CI and lowest fit were obtained at 70° ± 2° of the tilt angle (color online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Kumar, N.N., Mondal, R. et al. Ductile-to-Brittle Transition in Low-Alloy Steel: A Combined Experimental and Numerical Investigation. J. of Materi Eng and Perform 28, 4275–4288 (2019). https://doi.org/10.1007/s11665-019-04173-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04173-1

Keywords

Navigation