Skip to main content
Log in

Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To achieve low thermal conductivity, polythiophene (PTh)/bismuth telluride (Bi2Te3) nanocomposite has been prepared by spark plasma sintering using a mixture of nanosized Bi2Te3 and PTh powders. Bi2Te3 powder with spherical-shaped particles of 30 nm diameter and PTh nanosheet powder were first prepared by hydrothermal synthesis and chemical oxidation, respectively. X-ray diffraction analysis and scanning electron microscopy observations revealed that the hybrid composite consists of PTh nanosheets and spherical Bi2Te3. The organic PTh acts as an adhesive in the composite. Transport measurements showed that the PTh in the Bi2Te3 matrix can reduce its thermal conductivity significantly, but also dramatically reduces its electrical conductivity. As a result, the figure of merit of the composite is lower than that of pure Bi2Te3 prepared under the same conditions. The maximum value of ZT for the sample with 5% PTh (by weight) was 0.18 at 473 K, which is rather high compared with other polymer/inorganic thermoelectric material composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Min and D.M. Rowe, Solid State Electron. 43, 923 (1999).

    Article  CAS  Google Scholar 

  2. I. Stark and M. Stordeur, 18th International Conference on Thermoelectrics (Baltimore, MD: IEEE, 1999), p. 465.

  3. T.M. Tritt, Science 283, 804 (1999).

    Article  CAS  Google Scholar 

  4. H. Yan, N. Sada, and N. Toshima, J. Therm. Anal. Calorim. 69, 881 (2002).

    Article  CAS  Google Scholar 

  5. Y. Shinohara, K. Ohara, H. Nakanishi, Y. Imai, and Y. Isoda, Mater. Sci. Forum 141, 492 (2005).

    Google Scholar 

  6. P. Reddy, S.Y. Jang, R.A. Segalman, and A. Majumdar, Science 315, 1568 (2007).

    Article  CAS  Google Scholar 

  7. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).

    Article  CAS  Google Scholar 

  8. J. Wusten and K. Potje, J. Phys. D 41, 135113 (2008).

    Article  Google Scholar 

  9. H. Yoshino, G.C. Papassiliou, and K. Murata, J. Therm. Anal. Calorim. 92, 457 (2008).

    Article  CAS  Google Scholar 

  10. Y. Shinohara, K. Ohara, Y. Imai, Y. Isoda, and H. Nakanishi, 22nd International Conference on Thermoelectrics (IEEE, 2003), pp. 298-300.

  11. A. Shakouri and S. Li, 18th International Conference on Thermoelectrics (Baltimore, MD: IEEE, 1999), p. 402.

  12. Y.W. Park, Synth. Met. 45, 173 (1991).

    Article  CAS  Google Scholar 

  13. X.B. Zhao, S.H. Hu, M.J. Zhao, and T.J. Zhu, Mater. Lett. 52, 147 (2002).

    Article  CAS  Google Scholar 

  14. X. Xu, L. Chen, C. Wang, Q. Yao, and C. Feng, J. Solid State Chem. 178, 2163 (2005).

    Article  CAS  Google Scholar 

  15. S.R. Hostler, P. Kaul, K. Day, V. Qu, C. Cullen, A.R. Abramson, X.F. Qui, and C. Burda, 25th International Conference on Thermoelectrics, ed. P. Rogl (Vienna: IEEE, 2006), p. 1400.

  16. N. Mateeva, H. Niculescu, J. Schlenoff, and L.R. Testardi, J. Appl. Phys. 83, 3111 (1998).

    Article  CAS  Google Scholar 

  17. K. Chatterjee, A. Suresh, S. Ganguly, K. Kargupta, and D. Banerjee, Mater. Charact. 60, 1597 (2009).

    Google Scholar 

  18. R. Zuzok, A.B. Kaiser, W. Pukacki, and S. Roth, J. Chem. Phys. 95, 1270 (1991).

    Article  CAS  Google Scholar 

  19. J. Tsukamoto, A. Takahash, and K. Kawasaki, Jpn. J. Appl. Phys. 29, 125 (1990).

    Article  CAS  Google Scholar 

  20. S. Masubushi, S. Kazama, K. Mizoguchi, M. Honda, K. Kume, R. Matsushita, and T. Matsuyama, Synth. Met. 57, 4962 (1993).

    Google Scholar 

  21. A.B. Kaiser, Phys. Rev. B 40, 2806 (1989).

    Article  Google Scholar 

  22. N.T. Kemp, A.B. Kaiser, C.J. Liu, B. Chapman, O. Mercier, A.M. Carr, H.J. Trodahl, R.G. Buckley, A.C. Partridge, J.Y. Lee, C.Y. Kim, A. Bartl, L. Dunsch, W.T. Smith, and J.S. Shapiro, J. Polym. Sci. B 37, 953 (1999).

    Google Scholar 

  23. H. Unuma, N. Shigetsuka, and M. Takahashi, J. Mater. Sci. Lett. 17, 1055 (1998).

    Article  CAS  Google Scholar 

  24. J.A. Malen, S.K. Yee, A. Majumdar, and R. Segalman, Chem. Phys. Lett. 491, 109 (2010).

    Article  CAS  Google Scholar 

  25. K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, and Y. Shinohara, Jpn. J. Appl. Phys. 48, 071501 (2009).

    Google Scholar 

  26. D.M. Rowe and C.M. Bhandari, Appl. Energy 6, 347 (1980).

    Article  CAS  Google Scholar 

  27. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Google Scholar 

  28. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Google Scholar 

  29. H.M. Wang, G.Q. Tang, S.S. Jin, C.X. Bian, F.F. Han, D. Liang, and X.C. Xu, Acta Chim. Sinica 65, 2454 (2007).

    Google Scholar 

  30. M.R. Karim, C.J. Lee, and M.S. Lee, J. Polym. Sci. A 44, 5283 (2006).

    Google Scholar 

  31. L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, and J.F. Li, J. Alloys Compd. 467, 91 (2009).

    Google Scholar 

  32. Y.H. Zhang, G.Y. Xu, F. Han, Z. Wang, and C.C. Ge, J. Electron. Mater. 39, 1741 (2010).

    Google Scholar 

  33. A. Kosuga, M. Uno, K. Kurosaki, and S. Yamanaka J. Alloys Compd. 391, 288 (2005).

    Google Scholar 

  34. E. Tamayo, K. Hayashi, T. Shinano, Y. Miyazaki, and T. Kajitani, Appl. Surf. Sci. 256, 4554 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Q. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ao, W.Q., Wang, L., Li, J.Q. et al. Synthesis and Characterization of Polythiophene/Bi2Te3 Nanocomposite Thermoelectric Material. J. Electron. Mater. 40, 2027–2032 (2011). https://doi.org/10.1007/s11664-011-1664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1664-3

Keywords

Navigation