Skip to main content
Log in

Large-Scale Synthesis of Graphene Films by Joule-Heating-Induced Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We report large-area synthesis of few-layer graphene films by chemical vapor deposition (CVD) in a cold-wall reactor. The key feature of this method is that the catalytic metal layers on the SiO2/Si substrates are self-heated to high growth temperature (900°C to 1000°C) by high-current Joule heating. Synthesis of high-quality graphene films, whose structural and electrical characteristics are comparable to those grown by hot-wall CVD systems, was confirmed by transmission electron microscopy images, Raman spectra, and current–voltage analysis. Optical transmittance spectra of the graphene films allowed us to estimate the number of graphene layers, which revealed that high-temperature exposure of Ni thin layers to a carbon precursor (CH4) was critical in determining the number of graphene layers. In particular, exposure to CH4 for 20 s produces very thin graphene films with an optical transmittance of 93%, corresponding to an average layer number of three and a sheet resistance of ~600 Ω/square.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science 320, 1308 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  5. A.M. van der Zande, P.L. McEuen, I.W. Frank, and D.M. Tanenbaum, J. Vac. Sci. Technol. B 25, 2558 (2007).

    Article  Google Scholar 

  6. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  7. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B.H. Hong, Nature 457, 706 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. J.M. Lee, Y.B. Pyun, J.S. Yi, J.W. Choung, and W.I. Park, J. Phys. Chem. C 113, 19134 (2009).

    Article  CAS  Google Scholar 

  9. K. Bradley, J.-C.P. Gabriel, and G. Grüner, Nano Lett. 3, 1355 (2003).

    ADS  Google Scholar 

  10. Q. Cao, S.-H. Hur, Z.-T. Zhu, Y. Sun, C. Wang, M. Meitl, M. Shim, and J.A. Rogers, Adv. Mater. 18, 304 (2006).

    Article  CAS  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Y. Zhang, J.P. Small, W.V. Pontius, and P. Kim, Appl. Phys. Lett. 86, 073104 (2005).

    Article  ADS  Google Scholar 

  13. Y.C. Si and E.T. Samulski, Nano Lett. 8, 1679 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, Science 312, 1191 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.-S. Pei, Appl. Phys. Lett. 93, 113103 (2008).

    Article  ADS  Google Scholar 

  17. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  19. H.J. Park, J. Meyer, S. Roth, and V. Skákalová, Carbon 48, 1088 (2010).

    Article  CAS  Google Scholar 

  20. P.W. Sutter, J.-I. Flege, and E.A. Sutter, Nat. Mater. 7, 406 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  21. J. Coraux, A.T. N’Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  22. S.J. Chae, F. Günes, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, and Y.H. Lee, Adv. Mater. 21, 2328 (2009).

    Article  CAS  Google Scholar 

  23. M. Ohring, Material Science of thin Films, 2nd ed. (San Diego: Academic, 2002).

    Google Scholar 

  24. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Y. Baskin and L. Meyer, Phys. Rev. 100, 544 (1955).

    Article  CAS  ADS  Google Scholar 

  26. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008).

    Article  CAS  Google Scholar 

  27. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 4359 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Il Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.M., Jeong, H.Y. & Park, W.I. Large-Scale Synthesis of Graphene Films by Joule-Heating-Induced Chemical Vapor Deposition. J. Electron. Mater. 39, 2190–2195 (2010). https://doi.org/10.1007/s11664-010-1340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1340-z

Keywords

Navigation