Skip to main content
Log in

Modeling of Thermal Conductivity of Graphite Nanosheet Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent experiments demonstrated a very high thermal conductivity in graphite nanosheet (GNS)/epoxy nanocomposites; however, theoretical analysis is lacking. In this letter, an effective medium model has been used to analyze the effective thermal conductivity of the GNS/polymer nanocomposites and has shown good validity. Strong influences of the aspect ratio and the orientation of the GNS are evident. As expected, interfacial thermal resistance still plays a role in determining the overall thermal transport in the GNS/polymer nanocomposites. In comparison with the interfacial thermal resistance between carbon nanotubes and polymers, the interfacial thermal resistance between GNS and polymers is about one order of magnitude lower, the reason for which is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. B. Debelak and K. Lafdi, Carbon 45, 1727 (2007).

    Article  CAS  Google Scholar 

  4. H. Fukushima, L.T. Drzal, B.P. Rook, and M.J. Rich, Therm. Anal. Calorim. 85, 235 (2006).

    Article  CAS  Google Scholar 

  5. S. Ganguli, A.K. Roy, and D.P. Anderson, Carbon 46, 806 (2008).

    Article  CAS  Google Scholar 

  6. M.T. Hung, O. Choi, Y.S. Ju, and H.T. Hahn, Appl. Phys. Lett. 89, 023117 (2006).

    Google Scholar 

  7. A.P. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  CAS  Google Scholar 

  8. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, and Y.P. Sun, Adv. Mater. 21, 2088 (2009).

    Article  CAS  Google Scholar 

  9. C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    Article  CAS  ADS  Google Scholar 

  10. L.M. Veca, F. Lu, M.J. Meziani, L. Cao, P. Zhang, G. Qi, L. Qu, M. Shrestha, and Y.P. Sun, Chem. Commun. 2565 (2009).

  11. S. Picard, D.T. Burns, and P. Roger, Metrologia 44, 294 (2007).

    Article  CAS  ADS  Google Scholar 

  12. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).

    Google Scholar 

  14. P.M. Ajayan and T.W. Ebbesen, Rep. Prog. Phys. 60, 1025 (1997).

    Article  CAS  ADS  Google Scholar 

  15. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Google Scholar 

  16. E. Pop, D. Mann, Q. Wang, K. Goodson, and H.J. Dai, Nano Lett. 6, 96 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. B.A. Cola, J. Xu, C.R. Cheng, X.F. Xu, T.S. Fisher, and H.P. Hu, J. Appl. Phys. 101, 054313 (2007).

    Google Scholar 

  18. J. Xu and T.S. Fisher, Int. J. Heat Mass Transf. 49, 1658 (2006).

    Article  CAS  Google Scholar 

  19. K. Kordas, G. Toth, P. Moilanen, M. Kumpumaki, J. Vahakangas, A. Uusimaki, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 90, 123105 (2007).

    Google Scholar 

  20. R. Prasher, Phys. Rev. B 77, 075424 (2008).

    Google Scholar 

  21. W. Lu, H.F. Lin, D.J. Wu, and G.H. Chen, Polymer 47, 4440 (2006).

    Article  CAS  Google Scholar 

  22. C.W. Nan, Z. Shi, and Y. Lin, Chem. Phys. Lett. 375, 666 (2003).

    Article  CAS  ADS  Google Scholar 

  23. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Google Scholar 

  24. T.C. Clancy and T.S. Gates, Polymer 47, 5990 (2006).

    Article  CAS  Google Scholar 

  25. S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett. 85, 2229 (2004).

    Article  CAS  ADS  Google Scholar 

  26. W. Lin, K.S. Moon, and C.P. Wong, Adv. Mater. 21, 2421 (2009).

    Article  CAS  ADS  Google Scholar 

  27. C.W. Nan, G. Liu, Y. Lin, and M. Li, Appl. Phys. Lett. 85, 3549 (2004).

    Article  CAS  ADS  Google Scholar 

  28. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Adv. Mater. 20, 4740 (2008).

    Article  CAS  Google Scholar 

  29. S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Kiblinski, Nat. Mater. 2, 731 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. W. Lin and C.P. Wong, Adv. Mater. 21 (2009). doi:10.1002/adma.200902189.

Download references

Acknowledgements

The authors acknowledge NSF (#0621115) for financial support and Dr. Wei Wang and Prof. Ya-ping Sun at Clemson University for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Zhang, R. & Wong, C. Modeling of Thermal Conductivity of Graphite Nanosheet Composites. J. Electron. Mater. 39, 268–272 (2010). https://doi.org/10.1007/s11664-009-1062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1062-2

Keywords

Navigation