Skip to main content
Log in

Electromagnetic response of 3D arrays of quantum dots

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A phenomenological theory of electromagnetic response properties of regular ensembles of quantum dots has been elaborated on the basis of the effective medium approach. We show that the QD composite comprising QDs with a given axis of symmetry is effectively a uniaxial dielectric continuum and the phenomenon of birefringence is inherent in it. It has been shown that arrays of resonantly amplifying QDs exhibit, threefold splitting of the gain band. This fine structure of the gain band originates from both the diffraction of the electromagnetic field by single anisotropically shaped QD and the electromagnetic interaction of QDs in array. The analytical results are compared with that obtained via direct numerical simulation by a minimal autonomic block (MAB) method for a tetragonal array of disk-like and pyramidal QDs. The numerics quantitatively confirm our prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R. Dingle and C.H. Henry, “Quantum Effects in Heterostructure Lasers,” U.S. patent 3982207 (21 September 1976).

  2. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  CAS  Google Scholar 

  3. M. Asada, Y. Miyamoto, and Y. Suemafsu, IEEE J. Quant. Electron. 22, 1915 (1986).

    Article  Google Scholar 

  4. L. Goldstein, F. Glass, J.I. Maxzin, M.N. Charasse, and G.Le. Roux, Appl. Phys. Lett. 47, 1099 (1985).

    Article  CAS  Google Scholar 

  5. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).

    Article  CAS  Google Scholar 

  6. N.N. Ledentsov, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, M.V. Maximov, I.G. Tabatadze, and P.S. Kop’ev Fiz. I Tekh. Poluprovodn. 28, 1484 (1994); Semiconductors 28 832, (1994).

    Google Scholar 

  7. N. Kirstaedter et al., Electron. Lett. 30, 1416 (1994).

    Article  CAS  Google Scholar 

  8. N. Kirstaedter, O. Schmidt, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, M.V. Maximov, P.S. Kop’ev, and Zh.I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).

    Article  CAS  Google Scholar 

  9. N.N. Ledentsov, J. Bohrer, D. Bimberg, I.V. Kochner, M.V. Maximov, P.S. Kop’ev, Zh.I. Alferov, A.O. Kosogov, S.S. Ruvimov, and P. Werner, Appl. Phys. Lett. 69, 1095 (1996).

    Article  CAS  Google Scholar 

  10. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Chichester, U.K.: John Wiley & Sons, 1999).

    Google Scholar 

  11. M. Grundmann et al., Phys. Rev. Lett. 74, 4043 (1995).

    Article  CAS  Google Scholar 

  12. M. Grundmann et al., Phys. State Sol. B 188, 249 (1995).

    CAS  Google Scholar 

  13. S.S. Ruvimov et al., Phys. Rev. B 51, 14766 (1995).

    Article  CAS  Google Scholar 

  14. S. Schmitt-Rink, D.A.B. Miller, and D.S. Chemla, Phys. Rev. B 35, 8113 (1987).

    Article  CAS  Google Scholar 

  15. O.J.F. Martin, C. Girard, and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).

    Article  CAS  Google Scholar 

  16. B. Hanewinkel, A. Knorr, P. Thomas, and S.W. Koch, Phys. Rev. B 55, 13715 (1997).

    Article  CAS  Google Scholar 

  17. G.Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Herrmann, N.N. Ledentsov, I.L. Krestnikov, Zh.I. Alferov, and D. Bimberg, Phys. Rev. B 59, 12275 (1999).

    Article  CAS  Google Scholar 

  18. Y. Kayanuma, J. Phys. Soc. Jpn. 62, 346 (1993).

    Article  Google Scholar 

  19. A. Lakhtakia, editor, Selected Papers on Linear Optical Composite Materials (Bellingham, WA: SPIE Optical Engineering Press, 1996).

    Google Scholar 

  20. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996); Science 273, 87 (1996).

    Article  CAS  Google Scholar 

  21. M. Asada, A. Kameyama, and Y. Suematsu, IEEE J. Quant. Electron. 20, 745 (1984).

    Article  Google Scholar 

  22. L.V. Asryan and R.A. Suris, Semicond. Sci. Technol. 11, 554 (1996).

    Article  CAS  Google Scholar 

  23. O. Stier and D. Bimberg, Phys. Rev. B 55, 7726 (1997).

    Article  CAS  Google Scholar 

  24. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Oxford, U.K.: Pergamon Press, 1960).

    Google Scholar 

  25. J.C. Maxwell-Garnett, Philos. Trans. R. Soc. 203, 385 (1904); D.M. Wood and N.W. Ashcroft, Philos. Mag. 35, 269 (1977).

    Google Scholar 

  26. M. Born and E. Wolf, Principles of Optics, 6th ed. (Oxford, U.K.: Pergamon Press, 1985), Sec. 14.3.

    Google Scholar 

  27. Von H. Faxen, Z. für Physik 2, 218 (1920).

    Article  CAS  Google Scholar 

  28. N.A. Khiznjak, Integral Equations of Macroscopic Electrodynamics, in Russian (Kiev, Russia: Naukova Dumka, 1986).

    Google Scholar 

  29. R.H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics (New York: John Wiley Sons, 1969).

    Google Scholar 

  30. W.W. Chow, S.W. Koch, and M. Sargent III, Semiconductor-Laser Physics (Berlin, Germany: Springer, 1994).

    Google Scholar 

  31. P. Borri, W. Langbein, J. Mork, J.M. Hvam, F. Heinrichsdorff, M.H. Mao, and D. Bimberg, Phys. Rev. B 60, 7784 (1999).

    Article  Google Scholar 

  32. R.E. Klein, Electromagnetic Scattering, ed. P.L.E. Uslenghi (New York: Academic Press, 1978), pp. 1–28.

    Google Scholar 

  33. T. Kato, Perturbation Theory for Linear Operator (Berlin, Germany: Springer, 1978).

    Google Scholar 

  34. N.N. Ledentsov et al., Phys. Rev. B 54, 8743 (1996).

    Article  CAS  Google Scholar 

  35. Q. Xie, P. Chen, and A. Madhukax, Appl. Phys. Lett. 65, 2051 (1994).

    Article  CAS  Google Scholar 

  36. G.S. Solomon, J.A. Trezza, A.F. Marshall, and J.S. Harris, Jr., Phys. Rev. Lett. 76, 952 (1996).

    Article  CAS  Google Scholar 

  37. F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, A. Kosogov, and P. Werner, Appl. Phys. Lett. 68, 3284 (1996).

    Article  CAS  Google Scholar 

  38. A. Yariv and P. Yeh, Optical Waves in Crystals (New York: John Wiley & Sons, 1983), Sec. 4.6.

    Google Scholar 

  39. V.V. Nikolsky and T.I. Nikolskaya, Decomposition Approach to Electrodynamical Problems, in Russian (Moscow, Russia: Nauka, 1983).

    Google Scholar 

  40. P. Pregla and W. Pasher, Numerical Techniques for Microwave and Millimeter Wave Passive Structures, ed. T. Itoh, (New York: John Wiley & Sons, 1989), pp. 381–446.

    Google Scholar 

  41. U. Rogge and R. Pregla, JOSA B 8, 459 (1991).

    Article  CAS  Google Scholar 

  42. F.J. Schuckle and R. Pregla, IEEE Trans. MTT 38, 1473 (1990).

    Article  Google Scholar 

  43. K.C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits (Boston, MA: Artech House, Inc., 1981).

    Google Scholar 

  44. M. Grundmann and D. Bimberg, Phys. Rev. B 55, 4054 (1997).

    Article  CAS  Google Scholar 

  45. C. Kittel, Introduction to Solid State Physics (New York: John Wiley & Sons, 1986).

    Google Scholar 

  46. S.M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys. B 29, 3763 (1996).

    Article  CAS  Google Scholar 

  47. M. Strassburg et al., Appl. Phys. Lett. 72, 942 (1998).

    Article  CAS  Google Scholar 

  48. I.L. Krestnikov et al., Appl. Phys. Lett. 72, 942 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimenko, S.A., Slepyan, G.Y., Kalosha, V.P. et al. Electromagnetic response of 3D arrays of quantum dots. J. Electron. Mater. 29, 494–503 (2000). https://doi.org/10.1007/s11664-000-0034-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0034-3

Key words

Navigation