Skip to main content
Log in

A method for extracting phase change kinetics from dilatation for multistep transformations: Austenitization of a low carbon steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes the development of a method for determining phase change kinetics for multistep diffusion limited solid-state transformations from dilatation data. Since each step in a multistep reaction proceeds at a different rate, and the volume changes for the transformations are, in general, not equal, determination of the reaction kinetics from the dilatation data is not straightforward. Thus, a model is developed for the phase change process in which the transient dilatation is calculated based on the fractional extent of the various phases present. In this way, kinetic parameters are determined that allow the best match to the experimental data. However, both random and systematic experimental errors make reproduction of the experimental dilatation difficult. Therefore, a self-calibration process is developed that uses portions of the dilatation data to obtain the density variation of the various phases with temperature to help correct for experimental uncertainties. This procedure also enables the model to be used in situations where accurate property data are not available. The model and procedures are applied to the formation of austenite in a pearlite/ferrite low carbon steel where the pearlite and ferrite regions transform at different rates. A single kinetic parameter set allows reproduction of transformation transients of significantly different heating rates. These parameters can then be used to describe the austenitization for any time-temperature path. Excellent agreement between the model and experimental data is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e3 :

upper critical temperature

A :

fraction of pearlite transformed to austenite

B :

fraction of the ferrite region transformed to austenite

:

mean carbon content (wt pct)

c :

carbon content for a particular phase (wt pct)

d :

predicted dilatation

D(T) :

diffusion coefficient for carbon in austenite (cm2/s)

F :

volume fraction for a particular phase

K :

kinetic parameter

L :

sample length (m)

M :

mass fraction for a particular phase

m :

measured dilatation

n :

order of reaction

r :

radial location in assumed grain geometry (m)

R 1 :

initial pearlite colony radius (m)

R g :

prior austenite grain radius (m)

S(Π):

sensitivity fit to changes in parameter Π

t :

time (s)

T :

temperature (K)

V :

volume of unit mass (m3)

α :

kinetic free parameter

β :

kinetic free parameter

γ :

kinetic free parameter

ΔL :

sample length dilatation (m)

Δx :

change in distance (m)

Π:

input or fitting parameter

ρ :

density (g/cm3)

θ :

adjusted time (s)

ω :

density multiplier

c :

cementite

e :

eutectoid temperature

f :

ferrite

o :

standard temperature

p :

pearlite

p :

fraction within pearlite constituent

References

  1. G.A. Roberts and R.F. Mehl: Trans. ASM, 1943, vol. 31, pp. 613–50.

    Google Scholar 

  2. E.S. Davenport and E.C. Bain: Trans. AIME, 1930, vol. 90, pp. 117–31.

    Google Scholar 

  3. G.R. Speich and A. Szirmae: Trans. AIME, 1969, vol. 245, pp. 1063–69.

    CAS  Google Scholar 

  4. G. Molinder: Acta Metall., 1956, vol. 4, pp. 565–71.

    Article  CAS  Google Scholar 

  5. R.R. Judd and H.W. Paxton: Trans. AIME, 1968, vol. 242, pp. 206–15.

    CAS  Google Scholar 

  6. C.I. Garcia and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  7. P.A. Wycliffe, G.R. Purdy, and J.D. Embury: Can. Metall. Q., 1981, vol. 20, pp. 339–50.

    CAS  Google Scholar 

  8. D.F. Watt, L. Coon, M. Bibby, J. Goldak, and C. Henwood: Acta Metall., 1988, vol. 36 (11), pp. 3029–35.

    Article  CAS  Google Scholar 

  9. T. Akbay, R.C. Reed, and C. Atkinson: Acta Metall. Mater., 1994, vol. 47, pp. 1469–80.

    Google Scholar 

  10. C. Atkinson, T. Akbay, and R.C. Reed: Acta Metall. Mater., 1995, vol. 43, pp. 2013–31.

    Article  CAS  Google Scholar 

  11. C. Atkinson and T. Akbay: Acta Mater., 1996, vol. 44, pp. 2861–68.

    Article  CAS  Google Scholar 

  12. T. Akbay and C. Atkinson: J. Mater. Sci., 1996, vol. 31, pp. 2221–26.

    Article  CAS  Google Scholar 

  13. L. Gavard, H.K.D.H. Bhadeshia, D.J.C. MacKay, and S. Suzuki: Mater. Sci. Technol., 1996, vol. 12, pp. 453–63.

    CAS  Google Scholar 

  14. M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag: Z. Metallkd., 1996, vol. 87, pp. 24–32.

    CAS  Google Scholar 

  15. A.S. Oddy, J.M.J. McDill, and L. Karlsson: Can. Met. Q., 1996, vol. 35, pp. 275–83.

    Article  Google Scholar 

  16. K.W. Andrews: J. Iron Steel Ins., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  17. E.A. Brandes: Smithells Metals Reference Book, 6th ed., Butterworth and Co., London, 1983, pp. 13–58.

    Google Scholar 

  18. J.W. Christian: The Theory of Phase Transformations in Metals and Alloys, Part I, Pergamon Press, New York, NY, 1981, pp. 525–48.

    Google Scholar 

  19. A. Jacot, M. Swierkosz, J. Rappaz, M. Rappaz, and D. Mari: Les Ed. Phys., 1995, vol. 6, pp. 203–13.

    Google Scholar 

  20. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling: Numerical Recipes, Cambridge University Press, Cambridge, United Kingdom, 1990.

    Google Scholar 

  21. C.V. Robino, G.A. Knorovsky, R.C. Dykhuizen, D.O. MacCallum, and B.K. Damkroger: Proc. 5th Int. Conf. on Trends in Welding Research, S.A. David, ed., Pine Mountain, GA, 1998, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dykhuizen, R.C., Robino, C.V. & Knorovsky, G.A. A method for extracting phase change kinetics from dilatation for multistep transformations: Austenitization of a low carbon steel. Metall Mater Trans B 30, 107–117 (1999). https://doi.org/10.1007/s11663-999-0011-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0011-z

Keywords

Navigation