Skip to main content
Log in

Modeling of the effects of surface-active elements on flow patterns and weld penetration

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model was developed to calculate the transient temperature and velocity distributions in a stationary gas tungsten arc (GTA) weld pool of 304 stainless steels with different sulfur concentrations. A parametric study showed that, depending upon the sulfur concentration, one, two, or three vortexes may be found in the weld pool. These vortexes are caused by the interaction between the electromagnetic force and surface tension, which is a function of temperature and sulfur concentration, and have a significant effect on weld penetration. For given welding conditions, a minimum threshold sulfur concentration is required to create a single, clockwise vortex for deep penetration. When two metals with different sulfur concentrations are welded together, the weld-pool shape is skewed toward the metal with a lower sulfur content. Detailed physical insights on complicated fluid-flow phenomena and the resulting weld-pool penetration were obtained, based on the surface tension-temperature-sulfur concentration relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Oyler, R.A. Matuszesk, and C.R. Garr: Welding J., 1967, vol. 46, pp. 1006–11.

    CAS  Google Scholar 

  2. C.R. Heiple, R.J. Cluley, and R.D. Dixon: in Physical Metallurgy of Metal Joining, R. Kossowsky and M.E. Glicksman, eds., TMS-AIME, Warrendale, PA, 1980, pp. 160–65.

    Google Scholar 

  3. C.R. Heiple and J.R. Roper: Welding J., 1981, vol. 60, pp. 143s-145s.

    Google Scholar 

  4. C.R. Heiple, P. Burgardt, and J.R. Roper: Modeling of Casting and Welding Process II, J.A. Dantzig and J.T. Berry, eds., TMS-AIME, Warrendale, PA, 1984, pp. 193–205.

    Google Scholar 

  5. C.R. Heiple and J.R. Roper: Welding J., 1982, vol. 61, pp. 97s-102s.

    Google Scholar 

  6. C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden: Welding J., 1983, vol. 62, pp. 72s-77s.

    Google Scholar 

  7. C.R. Heiple and P. Burgardt: Welding J., 1985, vol. 64, pp. 159s-162s.

    Google Scholar 

  8. S. Kou and Y.H. Wang: Welding J., 1986, vol. 65, pp. 63s-70s.

    Google Scholar 

  9. S. Kou and D.K. Sun: Metall. Trans. A, 1985, vol. 16A, pp. 203–13.

    CAS  Google Scholar 

  10. M.C. Tsai and S. Kou: Int. J. Num. Meth. Fluids, 1989, vol. 9, pp. 1503–16.

    Article  Google Scholar 

  11. T. Zacharia, A.H. Eraslan, and D.K. Aidun: Welding J., 1988, vol. 67, pp. 53s-62s.

    Google Scholar 

  12. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Welding J., 1989, vol. 68, pp. 499s-509s.

    Google Scholar 

  13. T. Zacharia, A.H. Eraslan, D.K. Aidun, and S.A. David: Metall. Trans. B, 1989, vol. 20B, pp. 645–59.

    CAS  Google Scholar 

  14. T. Zacharia, S.A. David, and J.M. Vitek: Metall. Trans. B, 1991, vol. 22B, pp. 233–41.

    Article  CAS  Google Scholar 

  15. G.M. Oreper and J. Szekely: J. Fluid Mech., 1984, vol. 147, pp. 53–79.

    Article  Google Scholar 

  16. M.E. Thompson and J. Szekely: Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1007–19.

    Article  Google Scholar 

  17. R.T.C. Choo, J. Szekely, and R.C. Welsthoff: Welding J., 1990, vol. 69, pp. 346s-361s.

    Google Scholar 

  18. R.T.C. Choo and J. Szekely: Welding J., 1992, vol. 71, pp. 77s-93s.

    Google Scholar 

  19. R.T.C. Choo, J. Szekely, and S.A. David: Metall. Trans. B, 1992, vol. 23B, pp. 371–84.

    CAS  Google Scholar 

  20. S.D. Kim and S.J. Na: Welding J., 1992, vol. 71, pp. 179s-193s.

    Google Scholar 

  21. R.A. Wood and D.R. Milner: Welding J., 1971, vol. 50, pp. 163s-173s.

    Google Scholar 

  22. B.J. Keene, K.C. Mills, J.W. Bryant, and E.D. Hondros: Can. Metall. Q., 1982, vol. 21, pp. 393–403.

    CAS  Google Scholar 

  23. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1990, vol. 35, pp. 185–216.

    CAS  Google Scholar 

  24. P. Burgardt and R.D. Campbell: Key Eng. Mater., 1992, vols. 69–70, pp. 379–416.

    Article  Google Scholar 

  25. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  26. M.C. Flemings: Solidification Processing, McGraw-Hill, Inc., New York, NY, 1974, pp. 244–52.

    Google Scholar 

  27. M.J. Voss and H.L. Tsai: Int. J. Eng. Sci., 1996, vol. 34, pp. 715–37.

    Article  CAS  Google Scholar 

  28. M. Choi, R. Greif, and M. Salcudean: Num. Heat Transfer, 1987, vol. 11, pp. 477–89.

    Article  Google Scholar 

  29. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  30. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, NY, 1980, pp. 96–102.

    Google Scholar 

  31. K.C. Chiang and H.L. Tsai: Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 1771–78.

    Article  CAS  Google Scholar 

  32. Q.Z. Diao and H.L. Tsai: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1051–62.

    Article  CAS  Google Scholar 

  33. H.G. Kraus: Welding J., 1989, vol. 68, pp. 84s-91s.

    Google Scholar 

  34. H.G. Kraus: Welding J., 1989, vol. 68, pp. 269s-279s.

    Google Scholar 

  35. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Shi, Q. & Tsai, H.L. Modeling of the effects of surface-active elements on flow patterns and weld penetration. Metall Mater Trans B 32, 145–161 (2001). https://doi.org/10.1007/s11663-001-0017-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0017-7

Keywords

Navigation