Skip to main content
Log in

Surface oxide and the role of magnesium during the sintering of aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of trace additions of magnesium on the sintering of aluminum and its alloys is examined. Magnesium, especially at low concentrations, has a disproportionate effect on sintering because it disrupts the passivating Al2O3 layer through the formation of a spinel phase. Magnesium penetrates the sintering compact by solid-state diffusion, and the oxide is reduced at the metal-oxide interface. This facilitates solid-state sintering, as well as wetting of the underlying metal by sintering liquids, when these are present. The optimum magnesium concentration is approximately 0.1 to 1.0 wt pct, but this is dependent on the volume of oxide and, hence, the particle size, as well as the sintering conditions. Small particle-size fractions require proportionally more magnesium than large-size fractions do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Smart and E.C. Ellwood: Nature, 1958, vol. 181, pp. 833–34.

    Article  CAS  Google Scholar 

  2. R.Q. Guo, P.K. Rohatgi, and D. Nath: J. Mater. Sci., 1997, vol. 32, pp. 3971–74.

    Article  CAS  Google Scholar 

  3. P. Ramakrishnan and G.S. Tendolkar: Powder Metall., 1964, vol. 7, pp. 34–49.

    CAS  Google Scholar 

  4. P. Ramakrishnan: Powder Metall., 1966, vol. 9, pp. 47–53.

    CAS  Google Scholar 

  5. T. Watanabe and Y. Horikoshi: Int. J. Powder Metall., 1976, vol. 12, pp. 209–14.

    CAS  Google Scholar 

  6. Z.A. Munir: J. Mater. Sci., 1979, vol. 14, pp. 2733–40.

    Article  CAS  Google Scholar 

  7. Z.A. Munir: Powder Metall., 1981, vol. 24, pp. 177–80.

    CAS  Google Scholar 

  8. L. Darken and R. Gurry: Physical Chemistry of Metals, McGraw-Hill, London, 1953, p. 349.

    Google Scholar 

  9. C. Lall: Int. J. Powder Metall., 1991, vol. 27, pp. 315–29.

    CAS  Google Scholar 

  10. W.D. Kingery: J. Appl. Phys., 1959, vol. 30, pp. 301–06.

    Article  CAS  Google Scholar 

  11. Ju.V. Naidich: Prog. Surf. Membr. Sci., 1981, vol. 14, pp. 353–484.

    CAS  Google Scholar 

  12. F. Delannay, L. Froyen, and A. Deruyttere: J. Mater. Sci., 1987, vol. 22, pp. 1–16.

    Article  CAS  Google Scholar 

  13. S.W. Ip, M. Kucharski, and J.M. Toguri: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1699–1702.

    Article  CAS  Google Scholar 

  14. Y. Liu, Z. He, S. Yu, G. Dong, and Q. Li: J. Mater. Sci. Lett., 1992, 11, pp. 896–98.

    Article  CAS  Google Scholar 

  15. D.T. Livey and P. Murray: Proc. 2nd Plansee Seminar, 1955, pp. 375–404.

  16. J.-G. Li: Ceramics Int., 1994, vol. 20, pp. 391–412.

    Article  CAS  Google Scholar 

  17. W. Kehl and F. Fischmeister: Powder Metall., 1980, vol. 23, pp. 113–19.

    CAS  Google Scholar 

  18. M. Humenik Jr and W.D. Kingery: J. Am. Ceram. Soc., 1954, vol. 37, pp. 18–23.

    Article  CAS  Google Scholar 

  19. R.N. Lumley: Ph.D. Thesis, The University of Queensland, Queensland, 1998.

    Google Scholar 

  20. JCPDS-International Centre for Diffraction Data, Newtown Square, PA, 1996

  21. G.M. Scamans and E.P. Butler: Metall. Trans. A, 1975, vol. 6A, pp. 2055–63.

    CAS  Google Scholar 

  22. M.J. Couper, M. Nauer, R. Baumann, and R.F. Singer: Proc. Int. Conf. on PM Aerospace Materials, Lucerne, Switzerland, Nov. 2–4, 1987.

  23. H. Schlich, M. Thumann, and G. Wirth: Proc. Int. Conf. on PM Aerospace Materials, Lucerne, Switzerland, Nov. 2–4, 1987.

  24. P.E. Doherty and R.S. Davies: J. Appl. Phys., 1963, vol. 34, pp. 619–28.

    Article  CAS  Google Scholar 

  25. T.B. Sercombe: Ph.D. Thesis, The University of Queensland, Queensland, 1998.

    Google Scholar 

  26. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1984, vol. 7, pp. 129–30

  27. I.A. Shibli and D.E. Davies: Powder Metall., 1987, vol. 30, pp. 97–101.

    CAS  Google Scholar 

  28. S. Miura, Y. Machida, Y. Hirose and R. Yoshimura: Proc. 1993 Powder Metallurgy World Congr., Kyoto, Japan; appeared in J. Soc. Powder Powder Metall., 1993, pp. 571–74.

  29. K. Nishiyama and E. Suzuki: Proc. 1993 Powder Metallurgy World Congr., Kyoto, Japan; appeared in J. Soc. Powder Powder Metall., 1993, pp. 602–05.

  30. Y. Nakao, K. Sugaya, S. Seya, and T. Sakuma: U.S. Patent 5,525,292, 1996.

  31. A. Kimura, M. Shibata, K. Kondoh, Y. Takeda, M. Katayama, T. Kanie, and H. Takada: Appl. Phys. Lett., 1997, vol. 70, pp. 3615–17.

    Article  CAS  Google Scholar 

  32. T. Watanabe and K. Yamada: Int. J. Powder Metall., 1968, vol. 4, pp. 37–47.

    CAS  Google Scholar 

  33. F. Farzin Nia and B.L. Davies: Powder Metall., 1982, vol. 25, pp. 209–15.

    Google Scholar 

  34. W.J. Ullrich: Progress in Powder Metallurgy, Proc. Conf., MPIF, Princeton, NJ, 1986, vol. 42, pp. 535–56.

  35. E.M. Daver, W.J. Ullrich, and K.B. Patel: Key Eng. Mater., 1989, vols. 29–31, pp. 401–28.

    Google Scholar 

  36. J.E. Foss and D. DeFranco: SAE Technical Paper No. 940429, SAE, Warrendale, PA, 1994

  37. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: J. Phys. Chem. Ref. Data, 1985, Suppl. 1, vol. 14.

  38. C.G. Levi, G.J. Abbaschian, and R. Mehrabian: Metall. Trans. A, 1978, vol. 9A, pp. 697–711.

    CAS  Google Scholar 

  39. E. Breval, M.K. Aghajanian, and S.J. Luszcz: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2610–14.

    Article  CAS  Google Scholar 

  40. R. Molins, J.D. Bartout, and Y. Bienvenu: Mater. Sci. Eng., 1991, vol. A135, pp. 111–17.

    CAS  Google Scholar 

  41. J. Homeny and M.M. Buckley: Mater. Lett., 1991, vol. 10, pp. 421–24.

    Article  CAS  Google Scholar 

  42. A. Munitz, M. Metzger, and R. Mehrabian: Metall. Trans. A, 1979, vol. 10A, pp. 1491–97.

    CAS  Google Scholar 

  43. A.D. McLeod and C.M. Gabryel: Metall. Trans. A, 1992, vol. 23A, pp. 1279–83.

    CAS  Google Scholar 

  44. D.H. Kim, E.P. Yoon, and J.S. Kim: J. Mater. Sci. Lett., 1996, vol. 15, pp. 1429–31.

    Article  CAS  Google Scholar 

  45. N.S. Timofeev and A.P. Savitskii: Poroshkovaya Metallurgiya, 1990, No. 3 (327), pp. 188–92.

  46. A.P. Savitskii and L.S. Martsunova: Poroshkovaya Metallurgiya, 1977, No. 5 (173), pp. 14–19.

  47. T.B. Sercombe and G.B. Schaffer: Advances in Powder Metallurgy and Particulate Materials—1997, Proc. 1997 Conf. on Powder Metallurgy and Particulate Materials, Chicago, IL, 29–July 2, 1997, R. McKotch and R. Webb, eds., Metal Powder Industries Federation, Princeton, NJ.

    Google Scholar 

  48. T.B. Sercombe, G.B. Schaffer, and P. Calvert: unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumley, R.N., Sercombe, T.B. & Schaffer, G.M. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A 30, 457–463 (1999). https://doi.org/10.1007/s11661-999-0335-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0335-y

Keywords

Navigation