Skip to main content
Log in

The Effect of a Laser Beam on Chip Formation during Machining of Ti6Al4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of the laser beam on chip formation when machining Ti6Al4V alloy has been investigated at different cutting speeds and laser powers. The characteristics of the segmented chip produced by laser-assisted machining (LAM) in terms of the tooth depth and tooth spacing were strongly dependent on the cutting speed and laser power. Two types of segmented chip formation processes were observed, one at low and the other at high cutting speeds with a continuous chip occurring between these two types of segmented chips. The critical cutting speed at which the transition from the sharp, segmented chip to the continuous chip occurred increased with laser power. To obtain the continuous chip, plastic deformation at the shear zone to match the deformation strain introduced by the cutting tool is required. This can be achieved by laser heating the material in front of the cutting tool. A physical model is proposed to explain qualitatively the chip segmentation in conventional machining and the continuous chip transition at high cutting speed with the application of a laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. INCONEL is a trademark of Special Metals Corporation, New Hartford, NY.

References

  1. M. Bäker, J. Rösler, and C. Siemers: Trans. ASME J. Manuf. Sci. Eng., 2002, vol. 124, pp. 485–88.

    Article  Google Scholar 

  2. A.E. Bayoumi and J.Q. Xie: Mater. Sci. Eng. A, 1995, vol. 190, pp. 173–80.

    Article  Google Scholar 

  3. M. Cotterell and G. Byrne: Int. J. Nano Biomater., 2007, vol. 1, pp. 65–75.

    Article  CAS  Google Scholar 

  4. R. Komanduri: Wear, 1982, vol. 76, pp. 15–34.

    Article  Google Scholar 

  5. R. Komanduri and B.F.V. Turkovich: Wear, 1981, vol. 69, pp. 179–88.

    Article  CAS  Google Scholar 

  6. T. Obikawa and E. Usui: Trans. ASME J. Manuf. Sci. Eng., 1996, vol. 118, pp. 208–15.

    Article  Google Scholar 

  7. J.D.P. Velásquez, B. Bolle, P. Chevrier, G. Geandier, and A. Tidu: Mater. Sci. Eng. A, 2007, vols. 452–453, pp. 469–74.

    Google Scholar 

  8. R. Komanduri and Z.-B. Hou: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2995–10.

    Article  CAS  ADS  Google Scholar 

  9. J. Barry, G. Byrne, and D. Lennon: Int. J. Mach. Tool Manuf., 2001, vol. 41, pp. 1055–70.

    Article  Google Scholar 

  10. M.C. Shaw and A. Vyas: Ann. ClRP, 1998, vol. 47, pp. 77–82.

    Article  Google Scholar 

  11. A. Vyas and M.C. Shaw: Trans. ASME J. Manuf. Sci. Eng., 1999, vol. 211, pp. 163–72.

    Article  Google Scholar 

  12. P. Dumitrescu, P. Koshy, J. Stenekes, and M.A. Elbestawi: Int. J. Mach. Tool Manuf., 2006, vol. 46, pp. 2009–16.

    Article  Google Scholar 

  13. S. Rajagopal, D.J. Plankenhorn, and V.L. Hill: J. Appl. Metalworking, 1982, vol. 2, pp. 170–84.

    Article  Google Scholar 

  14. S. Sun, J. Harris, and M. Brandt: Adv. Eng. Mater., 2008, vol. 10, pp. 565–72.

    Article  CAS  Google Scholar 

  15. B. Lesourd, F.L. Maître, and T. Thomas: Manuf. Sys., 1995, vol. 24, pp. 279–86.

    Google Scholar 

  16. M. Anderson, R. Patwa, and Y.C. Shin: Int. J. Mach. Tool Manuf., 2006, vol. 46, pp. 1879–91.

    Article  Google Scholar 

  17. J.C. Rozzi, F.P. Incropera, and Y.C. Shin: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 1425–37.

    Article  MATH  CAS  Google Scholar 

  18. J.C. Rozzi, F.E. Pfefferkorn, F.P. Incropera, and Y.C. Shin: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 1409–24.

    Article  MATH  CAS  Google Scholar 

  19. K.N. Vonatsos and D.I. Pantelis: Appl. Phys. A, 2005, vol. 80, pp. 885–89.

    Article  CAS  ADS  Google Scholar 

  20. D.I. Pantelis and K.N. Vonatsos: Appl. Phys. A, 1998, vol. 67, pp. 435–39.

    Article  CAS  ADS  Google Scholar 

  21. S. Sun, M. Brandt, and M.S. Dargusch: Int. J. Mach. Tool Manuf., 2009, vol., pp. 561–68.

  22. M.C. Shaw: Metal Cutting Principles, 2nd ed., Oxford University Press, New York, NY, 2005, p. 22.

    Google Scholar 

  23. M.R. Shankar, B.C. Rao, S. Lee, S. Chandrasekar, A.H. King, and W.D. Compton: Acta Mater., 2006, vol. 54, pp. 3691–3700.

    Article  CAS  Google Scholar 

  24. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025–43.

    Article  CAS  Google Scholar 

  25. K.T. Ramesh: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 927–35.

    CAS  ADS  Google Scholar 

  26. G.L. Wulf: Int. J. Mech. Sci., 1979, vol. 21, pp. 713–18.

    Article  Google Scholar 

  27. P. Follansbee and G.T. Gray: Metall. Trans. A, 1989, vol. 20A, pp. 863–74.

    CAS  ADS  Google Scholar 

  28. W.-S. Lee and C.-F. Lin: Mater. Sci. Eng. A, 1998, vol. 241, pp. 48–59.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the CAST Cooperative Research Centre for supporting this work. The CAST Cooperative Research Centre was established and is supported under the Australian Government’s Cooperative Research Centres Programme. The authors would also like to acknowledge the support of the Defence Materials Technology Centre, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sun.

Additional information

Manuscript submitted March 10, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Brandt, M. & Dargusch, M. The Effect of a Laser Beam on Chip Formation during Machining of Ti6Al4V Alloy. Metall Mater Trans A 41, 1573–1581 (2010). https://doi.org/10.1007/s11661-010-0187-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0187-5

Keywords

Navigation