Skip to main content
Log in

Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Synchrotron X-ray microtomography has been used for the three-dimensional characterization of microstructure in the cell walls of aluminum foams. A combination of high-resolution phase contrast imaging technique and several application techniques has enabled the quantitative image analyses of microstructures as well as the assessment of their effects on deformation behaviors. The application techniques include local area tomography, microstructural gauging and in-situ observation using a specially designed material test rig. It has been clarified that ductile buckling of a cell wall occurs regardless of any of the microstructural factors in the case of a pure aluminum foam, while rather brittle fracture of a cell wall is induced by the existence of coarse micropores and their distribution independently of the intermetallic particles and the grain boundary in the case of aluminum foams alloyed with Zn and Mg. It has also been confirmed that coarse TiH2 particles, which are a residual foaming agent added to alloy melts, remain intact during the deformation. When cooling rate during foaming is high, however, lower energy absorption might be attributable to the significant amount of residual TiH2 particle and its inhomogeneous distribution. These tendencies are also confirmed by three-dimensional strain mapping by tracking internal microstructural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams, Butterwirth-Heinemann, Woburn, MA, 2000, Chapter 4, pp. 40–54.

    Google Scholar 

  2. L.J. Gibson and M.F. Ashby: Cellular Solids, Pergamon Press, Oxford, U.K., 1988.

    Google Scholar 

  3. E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, and J.M. Letang: Composites Science and Technology, 2003, vol. 63, pp. 2431–43.

    Article  Google Scholar 

  4. T.G. Nieh, K. Higashi, and J. Wadsworth: Mater. Sci. Engineering, 2000, vol. A283, pp. 105–10.

    Article  CAS  Google Scholar 

  5. Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenestedt, and A.G. Evans: Acta Mater., 1997, vol. 45, pp. 5245–59.

    Article  CAS  Google Scholar 

  6. R. Gradinger and F.G. Rammerstorfer: Acta Mater., 1999, vol. 47, pp. 143–48.

    Article  CAS  Google Scholar 

  7. U. Ramamurty and A. Paul: Acta Mater., 2004, vol. 52, pp. 869–76.

    Article  CAS  Google Scholar 

  8. A.E. Simone and L.J. Gibson: Acta Mater., 1998, vol. 46, pp. 3929–35.

    Article  CAS  Google Scholar 

  9. A.-F. Bastawros and A.G. Evans: Metal Foams and Porous Metal Structures, MIT-Verlag, Bremen, Germany, 1999, pp. 221–26.

    Google Scholar 

  10. W. Sanders and L.J. Gibson: in Porous and Cellular Materials for Structural, D.S. Schwartz, D.S. Shih, A.G. Evans and H.N.G. Wadley, eds., Materials Research Society, San Francisco, 1998, pp. 53–57.

    Google Scholar 

  11. NEDO: Interim Report of the NEDO project “Production & Fabrication Technology Development of Aluminum Useful for Automobile Lightweighting,”. NEDO, Kawasaki, Japan, 2004 [in Japanese].

    Google Scholar 

  12. U. Mosler, A. Muller, H. Baum, U. Martin, and H. Oettel: in Cellular Metals and Metal Forming Technology, J. Bahnhart, M.F. Ashby and N.A. Fleck, eds., MIT-Verlag, Bremen, Germany, 2001, pp. 233–38.

    Google Scholar 

  13. C.S. Marchi, J.-F. Despois, and A. Mortensen: Acta Mater., 2004, vol. 52, pp. 2895–902.

    Article  CAS  Google Scholar 

  14. E. Maire, A. Elmoutaouakkil, A. Fazekas, and L. Salvo: ESRF Highlights, ESRF, Grenoble, France, 2003.

    Google Scholar 

  15. L. Salvo, P. Clotens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Biffiere, W. Ludwig, E. Boller, D. Bellet, and C. Josserond: Nucl. Instr. Meth. Phys. Res, 2003, vol. B200, pp. 273–86.

    Article  Google Scholar 

  16. T.G. Nieh, J.H. Kenney, and J. Wadsworth: Scripta Mater., 1998, vol. 38, pp. 1487–94.

    Article  CAS  Google Scholar 

  17. E. Maire, J.Y. Buffiere, L. Salvo, J.J. Blandin, W. Ludwig, and J.M. Letang: Adv. Engineering Mater., 2001, vol. 3, pp. 539–46.

    Article  CAS  Google Scholar 

  18. E. Jasiuniene, J. Goebbels, B. Illerhaus, P. Lowe, and A. Kottar: in Cellular Metals and Metal Forming Technology, J. Bahnhart, M.F. Ashby, and N.A. Fleck, eds., MIT-Verlag, Bremen, Germany, 2001, pp. 251–54.

    Google Scholar 

  19. A. Faridani, K.A. Buglione, P. Huabsomboon, O.D. Iancu, and J. McGrath: Contemp. Math., 2001, vol. 278, pp. 1–19.

    Google Scholar 

  20. H. Toda, I. Sinclair, J.-Y. Buffière, E. Maire, T. Connolley, M. Joyce, K.H. Khor, and P.J. Gregson: Philos. Mag., 2003, vol. A83, pp. 2429–48.

    Article  CAS  Google Scholar 

  21. H. Toda, I. Sinclair, J.-Y. Buffière, E. Maire, K.H. Khor, P. Gregson, and T. Kobayashi: Acta Mater., 2004, vol. 52, pp. 1305–17.

    Article  CAS  Google Scholar 

  22. J. Ahn, H. Toda, M. Niinomi, and T. Kobayashi: Review of Progress in Quantitative NDE, 2005, vol. 24, pp. 1423–30.

    Google Scholar 

  23. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Engineering Mater., 2000, vol. 2, pp. 179–83.

    Article  CAS  Google Scholar 

  24. G.T. Herman: Image Reconstruction from Projections, The Fundamentals of Computerized Tomography, Academic Press, Orland, 1980.

    Google Scholar 

  25. P. Cloetens, M. Pateyron-Salome, J.-Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker: J. Appl. Phys., 1997, vol. 1, pp. 5878–86.

    Article  Google Scholar 

  26. S. Youssef, E. Maire, and R. Gaertner: Acta Mater., 2005, vol. 53, pp. 719–30.

    Article  CAS  Google Scholar 

  27. W.E. Lorensen and H.E. Cline: Comput. Graph. (ACM), 1987, vol. 21, pp. 163–69.

    Article  Google Scholar 

  28. H. Toda, T. Ohgaki, K. Uesugi, K. Makii, Y. Aruga, T. Akahori, M. Niinomi, and T. Kobayashi: Key Engineering Mater., 2005, vol. 297–300, pp. 1189–95.

    Article  Google Scholar 

  29. U. Mosler, A. Müller, H. Baum, U. Martin, and H. Oettel: Cellular Metals and Metal Forming Technology. MIT-Verlag, Bremen, Germany, 2001, pp. 233–38.

    Google Scholar 

  30. H. Toda, T. Kobayashi, and A. Takahashi: Aluminum Trans., 1999, vol. 1, pp. 109–16.

    CAS  Google Scholar 

  31. H. Toda and T. Kobayashi: Metall. Trans. A, 1997, vol. 28A, pp. 2149–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, H., Kobayashi, T., Niinomi, M. et al. Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography. Metall Mater Trans A 37, 1211–1219 (2006). https://doi.org/10.1007/s11661-006-1072-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1072-0

Keywords

Navigation