Skip to main content
Log in

Homogeneous steel infiltration

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The direct manufacture of metal parts by rapid prototyping (RP) often involves using a metal powder. Densification of the powder can be done either by sintering or infiltration. Infiltration avoids the shrinkage and distortion that typically accompanies sintering. However, in steels, the use of copper or bronze infiltrants limits the usefulness of parts because of the nonhomogeneous structure and properties. In this work, a conventional tool steel alloy has been made via homogeneous steel infiltration (HSI), a gated infiltration process that uses as the infiltrant a steel alloy with a lower melting point than the base powder. The infiltrant liquid uses carbon or silicon as a melting point depressant (MPD). Freeze-off of the steel infiltrant is avoided by infiltrating at a temperature at which some liquid is stable at chemical equilibrium. Examples of successful infiltrations using D2 tool steel as a target composition are shown. Mechanical properties (hardness and impact strength) following various heat treatments of the infiltrated D2 are compared with conventional wrought D2 tool steel and found to be very similar. The HSI is believed to be suitable to a wide variety of tool steels and stainless steels. Further, the process is applicable to the postprocessing of any suitable steel skeleton made by RP, as well as other powder metallurgy processes, such as metal injection molding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sachs, P. Williams, D. Brancazio, M. Cima, and K. Kremmin: Proc. Manufacturing Int. ’90, ASME, New York, NY, 1990, vol. 4, pp. 131–36.

    Google Scholar 

  2. S. Michaels, E. Sachs, and M. Cima: Solid Freeform Fabrication Symp. 1992, University of Texas, Austin, TX, 1992, pp. 244–50.

    Google Scholar 

  3. J. Lembo: Adv. Mater. Processes, 2003, vol. 161, pp. 52–53.

    Google Scholar 

  4. E. Goode: Adv. Mater. Processes, 2003, vol. 161, pp. 66–67.

    Google Scholar 

  5. D.F. Heaney and R.M. German: Adv. Powder Metall. Part Mater., MPIF, Princeton, NJ, 2001, pp. 8.73–8.83.

    Google Scholar 

  6. R. Irving: Int. J. Powder Metall., 2000, vol. 36, pp. 69–74.

    CAS  Google Scholar 

  7. E. Sachs, E. Wylonis, M. Cima, S. Allen, S. Michaels, E. Sun, H. Tang, and H. Guo: ANTEC ’95, Vol. I—Processing, Society of Plastic Engineers, Brookfield, CT, 1995, pp. 997–1003.

    Google Scholar 

  8. B.K. Paul, and S. Baskaran: J. Mater. Proc. Technol., 1996, vol. 61, pp. 168–72.

    Article  Google Scholar 

  9. E. Radstok: Rap. Prototyping J., 1999, vol. 5, pp. 164–68.

    Article  Google Scholar 

  10. S.S. Dimov, D.T. Pham, F. Lacan, and K.D. Dotchev: Assembly Automation, 2001, vol. 21, pp. 296–302.

    Article  Google Scholar 

  11. T.D. Stewart, K.W. Dalgarno, T.H.C. Childs, and J. Perkins: Solid Freeform Fabrication Symp., University of Texas, Austin, TX, 1999, pp. 443–49.

    Google Scholar 

  12. D. Uzunsoy, I.T.H. Chang, and P. Bowen: Powder Metall., 2002, vol. 45, pp. 251–54.

    Article  CAS  Google Scholar 

  13. S. Banerjee, R. Oberacker, and C.G. Goetzel: Int. J. Powder Metall. Powder Technol., 1984, vol. 20, pp. 325–41.

    CAS  Google Scholar 

  14. S. Banerjee, R. Oberacker, and C.G. Goetzel: Modern Developments in Powder Metallurgy, 1985, vol. 16, pp. 209–44.

    Google Scholar 

  15. A. Lorenz, E. Sachs, S. Allen, L. Rafflenbeul, and B. Kernan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 631–40.

    CAS  Google Scholar 

  16. A. Lorenz, E. Sachs, and S. Allen: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 641–53.

    CAS  Google Scholar 

  17. G. Langord: Mater. Sci. Eng., 1977, vol. 28, pp. 275–84.

    Article  Google Scholar 

  18. G. Langford and R.E. Cunningham: Metall. Trans. B, 1978, vol. 9B, pp. 5–19.

    CAS  Google Scholar 

  19. T.B. Sercombe, M. Loretto, and X. Wu: Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, New York, NY, 2000, pp. 3-25–3-36.

    Google Scholar 

  20. K.A. Thorsen, S. Hansen, and O. Kjaergaard: Powder Metall. Int., 1983, vol. 15, pp. 91–93.

    CAS  Google Scholar 

  21. CALPHAD and Alloy Thermodynamics, P.E.A. Turchi, A. Gonis, and R.D. Shull, eds., TMS, Warrendale, PA, 2002.

    Google Scholar 

  22. M. Hillert: Scand. J. Metall., 1997, vol. 26, pp. 215–23.

    CAS  Google Scholar 

  23. M. Hillert: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 559–66.

    CAS  Google Scholar 

  24. ASM Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 1, pp. 758 and 909.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kernan, B.D., Sachs, E.M., Allen, S.M. et al. Homogeneous steel infiltration. Metall Mater Trans A 36, 2815–2827 (2005). https://doi.org/10.1007/s11661-005-0278-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0278-x

Keywords

Navigation